Find focal length of electron for a parabolic motion

AI Thread Summary
The discussion focuses on deriving the focal length of an electron in parabolic motion using the work-energy principle. The user initially calculated a variable \( l \) as \( \frac{mu^2}{2eE} \) and questioned its relation to the focal length. Clarification was sought on whether \( l \) should be interpreted as \( x \) or \( y \), with emphasis on the direction of the force vector \( \vec F \). The equations presented indicate a relationship between the variables, ultimately leading to a derived acceleration \( a \) expressed in terms of \( x \), \( y \), and other constants. The thread concludes with a correction on the interpretation of the variables involved in the calculations.
Istiak
Messages
158
Reaction score
12
Homework Statement
An electron of charge e is moving at a constant velocity u, along x-axis. It enters a region of constant electric field E, which is pointing perpendicular to x-axis. The electron moves in a parabola. Which of the following represents the focal length of the parabola? Neglect any effects due to gravity. (for a parabola of type ##x^2=4ay##, a is the focal length)
Relevant Equations
##\int \vec F\cdot d\vec s = \frac{1}{2}mu^2##
Screenshot (108).png

Here I was going to use ##\int \vec F \cdot d\vec l = \frac{1}{2}mu^2##

What I got that is ##l=\frac{mu^2}{2eE}##. Here the question is what is ##l## (I took ##x## while doing the work but here I used ##l## instead of ##x##)? I was assuming that it's ##x## since I am calculating work in the parabola. So my equation stands ##a=\frac{m^2u^4}{16 y(eE)^2}##. But there's no option of it. But what I found for ##l## that satisfies. But my question is how ##l## is focal length?
 
Physics news on Phys.org
##l## is in the direction of ##\vec F##, so perpendicular to your ##x##. It plays the role of ##y##, not ##x##

##\ ##
 
BvU said:
##l## is in the direction of ##\vec F##, so perpendicular to your ##x##. It plays the role of ##y##, not ##x##

##\ ##
So if I take ##y## into account then I get...

##y=\frac{mu^2}{2eE}##
##\frac{x^2}{4a}=\frac{mu^2}{2eE}##
##a=\frac{x^2 eE}{2a mu^2}##

but... 🤔
 
No you don't:
$$\left . \begin {array} {ll} x &= ut \\y & = \displaystyle {eEt^2\over 2m} \end{array}\right \}\Rightarrow y =x^2 {eE\over 2mu^2}\Rightarrow x^2 = 4\left(mu^2\over 2eE\right ) y$$so that $$a=\displaystyle {mu^2\over 2eE}$$

[edit]sorry I had to fumble with the 2's a few times...

##\ ##
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...

Similar threads

Back
Top