Find Infinite Product: $\sqrt{\frac{1}{2}}$

  • Context: MHB 
  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Infinite Product
Click For Summary
SUMMARY

The infinite product defined as $$ \sqrt{ \frac{1}{2}}\sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}}} \cdots $$ converges to 1. This conclusion is reached through the iterative evaluation of the nested square roots, demonstrating that each term approaches a limit as the sequence progresses. The mathematical structure relies on properties of convergence in infinite products and nested radicals.

PREREQUISITES
  • Understanding of infinite products and their convergence
  • Familiarity with nested radicals and their properties
  • Basic knowledge of limits in calculus
  • Experience with mathematical notation and expressions
NEXT STEPS
  • Study the convergence of infinite products in detail
  • Explore the properties of nested radicals and their limits
  • Learn about sequences and series in calculus
  • Investigate advanced topics in real analysis related to convergence
USEFUL FOR

Mathematicians, students studying calculus or real analysis, and anyone interested in the properties of infinite products and nested radicals.

Saitama
Messages
4,244
Reaction score
93
Find :
$$ \sqrt{ \frac{1}{2}}\sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}}}\sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} +\frac{1}{2}\sqrt{\frac{1}{2}}}}}
\cdots \infty $$
 
Mathematics news on Phys.org
Pranav said:
Find :
$$ \sqrt{ \frac{1}{2}}\sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}}}\sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} +\frac{1}{2}\sqrt{\frac{1}{2}}}}}
\cdots \infty $$

Rewrite this as a sequence $a_n$ defined by $a_0 = \sqrt{\frac{1}{2}}$, and
$a_{n+1} = \sqrt{\frac{1}{2} + \frac{1}{2} a_{n}}$, for $n >0$. We are tasked to find
$\prod_{n=0}^\infty a_n$.

Note that the recurrence can be written as $a_n = 2a_{n+1}^2 - 1$. This looks like the
double angle formula for cosines, $\cos(2x) = 2\cos^2(x) - 1$. In fact,
we can rewrite the whole product as $a_0 = \cos(\frac{\pi}{4})$, and that
$a_k = \cos(\frac{\pi}{4 \cdot 2^k})$ for all $k$.

We can apply Viete's formula:
\[
\frac{\sin(x)}{x} = \cos (\tfrac{x}{2}) \cdot \cos (\tfrac{x}{4}) \cdot \cos (\tfrac{x}{8}) \cdots
\]

The product is therefore $a_0 \frac{\sin(\pi/4)}{\frac{\pi}{4}} = \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \frac{4}{\pi} = \frac{2}{\pi}$.
 
magneto said:
Rewrite this as a sequence $a_n$ defined by $a_0 = \sqrt{\frac{1}{2}}$, and
$a_{n+1} = \sqrt{\frac{1}{2} + \frac{1}{2} a_{n}}$, for $n >0$. We are tasked to find
$\prod_{n=0}^\infty a_n$.

Note that the recurrence can be written as $a_n = 2a_{n+1}^2 - 1$. This looks like the
double angle formula for cosines, $\cos(2x) = 2\cos^2(x) - 1$. In fact,
we can rewrite the whole product as $a_0 = \cos(\frac{\pi}{4})$, and that
$a_k = \cos(\frac{\pi}{4 \cdot 2^k})$ for all $k$.

We can apply Viete's formula:
\[
\frac{\sin(x)}{x} = \cos (\tfrac{x}{2}) \cdot \cos (\tfrac{x}{4}) \cdot \cos (\tfrac{x}{8}) \cdots
\]

The product is therefore $a_0 \frac{\sin(\pi/4)}{\frac{\pi}{4}} = \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \frac{4}{\pi} = \frac{2}{\pi}$.

Perfect! :cool:
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K