MHB Find Infinite Product: $\sqrt{\frac{1}{2}}$

  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Infinite Product
AI Thread Summary
The discussion focuses on evaluating the infinite product defined by a nested radical expression involving $\sqrt{\frac{1}{2}}$. Participants explore the structure of the expression, which combines multiple layers of square roots and additions. The convergence of the product is analyzed, leading to a conclusion about its value. The calculations reveal that the infinite product converges to a specific numerical value. Ultimately, the discussion emphasizes the mathematical techniques used to simplify and evaluate such infinite nested radicals.
Saitama
Messages
4,244
Reaction score
93
Find :
$$ \sqrt{ \frac{1}{2}}\sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}}}\sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} +\frac{1}{2}\sqrt{\frac{1}{2}}}}}
\cdots \infty $$
 
Mathematics news on Phys.org
Pranav said:
Find :
$$ \sqrt{ \frac{1}{2}}\sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}}}\sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} +\frac{1}{2}\sqrt{\frac{1}{2}}}}}
\cdots \infty $$

Rewrite this as a sequence $a_n$ defined by $a_0 = \sqrt{\frac{1}{2}}$, and
$a_{n+1} = \sqrt{\frac{1}{2} + \frac{1}{2} a_{n}}$, for $n >0$. We are tasked to find
$\prod_{n=0}^\infty a_n$.

Note that the recurrence can be written as $a_n = 2a_{n+1}^2 - 1$. This looks like the
double angle formula for cosines, $\cos(2x) = 2\cos^2(x) - 1$. In fact,
we can rewrite the whole product as $a_0 = \cos(\frac{\pi}{4})$, and that
$a_k = \cos(\frac{\pi}{4 \cdot 2^k})$ for all $k$.

We can apply Viete's formula:
\[
\frac{\sin(x)}{x} = \cos (\tfrac{x}{2}) \cdot \cos (\tfrac{x}{4}) \cdot \cos (\tfrac{x}{8}) \cdots
\]

The product is therefore $a_0 \frac{\sin(\pi/4)}{\frac{\pi}{4}} = \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \frac{4}{\pi} = \frac{2}{\pi}$.
 
magneto said:
Rewrite this as a sequence $a_n$ defined by $a_0 = \sqrt{\frac{1}{2}}$, and
$a_{n+1} = \sqrt{\frac{1}{2} + \frac{1}{2} a_{n}}$, for $n >0$. We are tasked to find
$\prod_{n=0}^\infty a_n$.

Note that the recurrence can be written as $a_n = 2a_{n+1}^2 - 1$. This looks like the
double angle formula for cosines, $\cos(2x) = 2\cos^2(x) - 1$. In fact,
we can rewrite the whole product as $a_0 = \cos(\frac{\pi}{4})$, and that
$a_k = \cos(\frac{\pi}{4 \cdot 2^k})$ for all $k$.

We can apply Viete's formula:
\[
\frac{\sin(x)}{x} = \cos (\tfrac{x}{2}) \cdot \cos (\tfrac{x}{4}) \cdot \cos (\tfrac{x}{8}) \cdots
\]

The product is therefore $a_0 \frac{\sin(\pi/4)}{\frac{\pi}{4}} = \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \frac{4}{\pi} = \frac{2}{\pi}$.

Perfect! :cool:
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
41
Views
5K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
11
Views
2K
Replies
11
Views
2K
Replies
34
Views
4K
Replies
4
Views
1K
Back
Top