MHB Find Infinite Product: $\sqrt{\frac{1}{2}}$

  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Infinite Product
AI Thread Summary
The discussion focuses on evaluating the infinite product defined by a nested radical expression involving $\sqrt{\frac{1}{2}}$. Participants explore the structure of the expression, which combines multiple layers of square roots and additions. The convergence of the product is analyzed, leading to a conclusion about its value. The calculations reveal that the infinite product converges to a specific numerical value. Ultimately, the discussion emphasizes the mathematical techniques used to simplify and evaluate such infinite nested radicals.
Saitama
Messages
4,244
Reaction score
93
Find :
$$ \sqrt{ \frac{1}{2}}\sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}}}\sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} +\frac{1}{2}\sqrt{\frac{1}{2}}}}}
\cdots \infty $$
 
Mathematics news on Phys.org
Pranav said:
Find :
$$ \sqrt{ \frac{1}{2}}\sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}}}\sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} +\frac{1}{2}\sqrt{\frac{1}{2}}}}}
\cdots \infty $$

Rewrite this as a sequence $a_n$ defined by $a_0 = \sqrt{\frac{1}{2}}$, and
$a_{n+1} = \sqrt{\frac{1}{2} + \frac{1}{2} a_{n}}$, for $n >0$. We are tasked to find
$\prod_{n=0}^\infty a_n$.

Note that the recurrence can be written as $a_n = 2a_{n+1}^2 - 1$. This looks like the
double angle formula for cosines, $\cos(2x) = 2\cos^2(x) - 1$. In fact,
we can rewrite the whole product as $a_0 = \cos(\frac{\pi}{4})$, and that
$a_k = \cos(\frac{\pi}{4 \cdot 2^k})$ for all $k$.

We can apply Viete's formula:
\[
\frac{\sin(x)}{x} = \cos (\tfrac{x}{2}) \cdot \cos (\tfrac{x}{4}) \cdot \cos (\tfrac{x}{8}) \cdots
\]

The product is therefore $a_0 \frac{\sin(\pi/4)}{\frac{\pi}{4}} = \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \frac{4}{\pi} = \frac{2}{\pi}$.
 
magneto said:
Rewrite this as a sequence $a_n$ defined by $a_0 = \sqrt{\frac{1}{2}}$, and
$a_{n+1} = \sqrt{\frac{1}{2} + \frac{1}{2} a_{n}}$, for $n >0$. We are tasked to find
$\prod_{n=0}^\infty a_n$.

Note that the recurrence can be written as $a_n = 2a_{n+1}^2 - 1$. This looks like the
double angle formula for cosines, $\cos(2x) = 2\cos^2(x) - 1$. In fact,
we can rewrite the whole product as $a_0 = \cos(\frac{\pi}{4})$, and that
$a_k = \cos(\frac{\pi}{4 \cdot 2^k})$ for all $k$.

We can apply Viete's formula:
\[
\frac{\sin(x)}{x} = \cos (\tfrac{x}{2}) \cdot \cos (\tfrac{x}{4}) \cdot \cos (\tfrac{x}{8}) \cdots
\]

The product is therefore $a_0 \frac{\sin(\pi/4)}{\frac{\pi}{4}} = \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \frac{4}{\pi} = \frac{2}{\pi}$.

Perfect! :cool:
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
41
Views
5K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
11
Views
2K
Replies
11
Views
2K
Replies
34
Views
4K
Replies
4
Views
1K
Back
Top