MHB Find K in Radians: Integer Solution

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Radians
Click For Summary
To find integer values of K in radians such that sin K is greater than sin(11π/60), the discussion emphasizes using elementary methods for solutions. A correction was made to the original problem, clarifying that it should compare sin K to sin 33 radians instead. Participants are encouraged to share their solutions and approaches. The thread highlights the collaborative nature of problem-solving within the community. Engaging with this challenge can enhance understanding of trigonometric inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find $K$, an integer and is in radians, such that $\sin K>\sin \left(\dfrac{11\pi}{60}\right)$.
 
Mathematics news on Phys.org
Note that for all integers $k$, we have:
$$\sin \frac{(4k + 1)\pi}{2} = 1$$
Therefore to solve the challenge it suffices to find an integer $K$ sufficiently close to $(4k + 1) \pi / 2$ for some $k \in \mathbb{Z}$. A straightforward way to do this is to obtain a good rational approximation of $\pi / 2$ as follows:
$$\frac{\pi}{2} \approx \frac{p}{q}$$
Then, if $q \equiv 1 \pmod{4}$ we can use the continuity of $\sin$ to deduce that:
$$\frac{q \pi}{2} \approx p ~ ~ ~ \implies ~ ~ ~ \sin p \approx \sin \frac{q \pi}{2} = 1$$
The successive convergents of $\pi/2$ can be computed through the continued fraction of $\pi/2$, and the first few are given below:
$$1, 2, \frac{3}{2}, \frac{11}{7}, \frac{355}{226}, \frac{51819}{32989}, \cdots$$
Now $51819 / 32989$ is the first nontrivial convergent such that $32989 \equiv 1 \pmod{4}$ and in fact we find that (in radians):
$$\sin 51819 \approx 0.999999999696513$$
Which satisfies the challenge's inequality with considerable overkill.
 
Bacterius said:
Note that for all integers $k$, we have:
$$\sin \frac{(4k + 1)\pi}{2} = 1$$
Therefore to solve the challenge it suffices to find an integer $K$ sufficiently close to $(4k + 1) \pi / 2$ for some $k \in \mathbb{Z}$. A straightforward way to do this is to obtain a good rational approximation of $\pi / 2$ as follows:
$$\frac{\pi}{2} \approx \frac{p}{q}$$
Then, if $q \equiv 1 \pmod{4}$ we can use the continuity of $\sin$ to deduce that:
$$\frac{q \pi}{2} \approx p ~ ~ ~ \implies ~ ~ ~ \sin p \approx \sin \frac{q \pi}{2} = 1$$
The successive convergents of $\pi/2$ can be computed through the continued fraction of $\pi/2$, and the first few are given below:
$$1, 2, \frac{3}{2}, \frac{11}{7}, \frac{355}{226}, \frac{51819}{32989}, \cdots$$
Now $51819 / 32989$ is the first nontrivial convergent such that $32989 \equiv 1 \pmod{4}$ and in fact we find that (in radians):
$$\sin 51819 \approx 0.999999999696513$$
Which satisfies the challenge's inequality with considerable overkill.

Very well done, Bacterius!

You're right, we can find other value(s) of $K$ using purely elementary method, therefore, anyone who wants to try that is welcome to post your solution here, hehehe...(Wink)
 
I just realized I posted a wrong problem, since the problem should read $\sin K>\sin 33 \,\text{radians}$. Sorry...

Here is the solution of other that I wanted to share with MHB:

Recall that $\sin 3x=3\sin x-4\sin^3 x$.

Thus we have $\sin 33-\sin(-11)=4\sin 11-4\sin^3 11=4\sin 11 \cos^2 11<0$, since the angle 11 in radians is in the fourth quadrant.

Thus, $\sin 11<0$ and hence $\sin(-11)>\sin 33$.

So, $K=-11$ will do.
 

Similar threads

Replies
2
Views
983
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
980
Replies
2
Views
3K
Replies
4
Views
1K
Replies
6
Views
4K
Replies
1
Views
1K
Replies
1
Views
1K