Note that for all integers $k$, we have:
$$\sin \frac{(4k + 1)\pi}{2} = 1$$
Therefore to solve the challenge it suffices to find an integer $K$ sufficiently close to $(4k + 1) \pi / 2$ for some $k \in \mathbb{Z}$. A straightforward way to do this is to obtain a good rational approximation of $\pi / 2$ as follows:
$$\frac{\pi}{2} \approx \frac{p}{q}$$
Then, if $q \equiv 1 \pmod{4}$ we can use the continuity of $\sin$ to deduce that:
$$\frac{q \pi}{2} \approx p ~ ~ ~ \implies ~ ~ ~ \sin p \approx \sin \frac{q \pi}{2} = 1$$
The successive convergents of $\pi/2$ can be computed through the continued fraction of $\pi/2$, and the first few are given below:
$$1, 2, \frac{3}{2}, \frac{11}{7}, \frac{355}{226}, \frac{51819}{32989}, \cdots$$
Now $51819 / 32989$ is the first nontrivial convergent such that $32989 \equiv 1 \pmod{4}$ and in fact we find that (in radians):
$$\sin 51819 \approx 0.999999999696513$$
Which satisfies the challenge's inequality with considerable overkill.