Find Length of Line D in ABC Triangle

Click For Summary
SUMMARY

The discussion focuses on calculating the length of line segment AD in a scalene triangle ABC, where AB = 3, AC = 4, and BC = 6. The segment D divides BC in the ratio of 2:3. By applying the Law of Cosines, the cosine of angle θ is determined to be 43/48. Subsequently, the length of segment AD is calculated to be √79/5 using the Law of Cosines again with the derived values.

PREREQUISITES
  • Understanding of scalene triangles and their properties
  • Familiarity with the Law of Cosines
  • Basic algebra for solving equations
  • Ability to interpret ratios in geometric contexts
NEXT STEPS
  • Study the Law of Cosines in-depth for various triangle types
  • Explore geometric ratios and their applications in triangle problems
  • Learn about other methods for finding lengths in triangles, such as the Law of Sines
  • Practice solving problems involving scalene triangles and segment ratios
USEFUL FOR

Mathematicians, geometry students, educators, and anyone interested in solving triangle-related problems using trigonometric principles.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How will you find the length of a line drawn inside a scalene triangle?


ABC is a scalene triangle, in which AB = 3, AC = 4 and BC = 6
D is the line joining A with BC.such that BD : DC : :2 :3

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Re: Sepia's question ay Yahoo! Answers regarding finding the length of a line segment within a trian

Hello Sepia,

Let's first draw a diagram:

View attachment 1408

We see that:

$$u+v=6$$

and we are given:

$$\frac{u}{v}=\frac{2}{3}\implies u=\frac{2}{3}v$$

Substituting this into the first equation, we then find:

$$\frac{2}{3}v+v=6$$

$$\frac{5}{3}v=6$$

$$v=\frac{18}{5}$$

Now, let's use the Law of Cosines to determine the cosine of the angle $\theta$:

$$3^2=4^2+6^2-2\cdot4\cdot6\cos(\theta)$$

$$\cos(\theta)=\frac{4^2+6^2-3^2}{2\cdot4\cdot6}=\frac{43}{48}$$

Next, using the Law of Cosines again, we may state:

$$x=\sqrt{4^2+v^2-2\cdot4\cdot v\cos(\theta)}$$

$$x=\sqrt{4^2+\left(\frac{18}{5} \right)^2-2\cdot4\cdot\left(\frac{18}{5} \right)\left(\frac{43}{48} \right)}=\frac{\sqrt{79}}{5}$$
 

Attachments

  • sepia.jpg
    sepia.jpg
    4 KB · Views: 103

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K