Find Limit of (1-cos(x))/2sin^2(x) for x->0

  • Thread starter Thread starter kholdstare121
  • Start date Start date
  • Tags Tags
    Limit
kholdstare121
Messages
10
Reaction score
0
I don't know if this neccessarily belongs in the calculus section, but it's for my calculus class.
How would you go about finding the limit as x approaches 0 for
(1-cos(x))/2sin^2(x)

I know the answer is 1/4(unless I copied it down wrong :/ ) , but what first steps would you take to evaluating thing. Also this is for my review packet where we just know the basics of derivatives, so the only knowledge I should be going by are my trig identities and that the limit as x approaches 0 for sinx/x =1.
Thanks.
 
Last edited:
Physics news on Phys.org
Expand your fraction by the factor (1+cos(x)).
 
Thanks that helped out a lot, figured it out!
I have a test on this chapter Tuesday, and these trig limits might just kill me.
There are so many identities to use, so little time.
 
Most of those trig identities can be opportunely RE-derived from a few simple facts:
1. Sine is odd, cosine is even
2. cos(x-y)=cos(x)cos(y)+sin(x)sin(y)
3. cos^2(x)+sin^2(x)=1
4 tan(x)=sin(x)/cos(x)

Remembering those 4 is really all you need, along with skill at manipulating expressions.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top