MHB Find Minimum Value of $(x-y)^2+\left( \sqrt{2-x^2}-\dfrac{9}{y} \right)^2$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum Value
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the minimum value of $(x-y)^2+\left( \sqrt{2-x^2}-\dfrac{9}{y} \right)^2$ for $0<x<\sqrt{2}$ and $y>0$.
 
Mathematics news on Phys.org
anemone said:
Find the minimum value of $(x-y)^2+\left( \sqrt{2-x^2}-\dfrac{9}{y} \right)^2$ for $0<x<\sqrt{2}$ and $y>0$.

Solution suggested by other:
The given function is the square of the distance between a point of the quarter of the circle $x^2+y^2=2$ in the open first quadrant and a point of the half hyperbola $xy=9$ in that quadrant. Then tangents to the curves at $(1,\,1)$ and $(3,\,3)$ separate the curves, and both are perpendicular to $x=y$, so those points are at the minimum distance, and the answer is $(3-1)^2+(1-3)^2=8$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top