Find Moment of Inertia Around CoM: Summation Formula & Point Mass

AI Thread Summary
To find the moment of inertia around the center of mass (CoM) when the axis of rotation is not through the CoM, the parallel axis theorem is utilized to adjust the moment of inertia accordingly. A summation formula is applied, with the concept of point mass clarified in relation to moments of inertia. The user presents a double integral setup for a uniform density rectangular area, defining variables for the dimensions and shifts from the CoM. After simplification, a specific formula for the moment of inertia is derived. The user seeks validation of their calculations and understanding of the topic.
genericpumpkin
Messages
1
Reaction score
0
How do I find the moment of inertia around the CoM of an object when the axis of rotation is not through the CoM?

When Are summation formula used in equations and what exactly constitutes a point mass? regarding moments of inertia?
 
Physics news on Phys.org
Use the parallel axis theorem to transfer the MOI from the c.o.m. to the axis of rotation.
 
I took the concept of a parallel axis shift and didn't require it to be parallel.

DoubleIntegral from -r_y to(L_y-r_y) and -r_x to (L_x - r_x) of ((x-r_x)^2+(y-r_y)^2)dm
For dm I used Mdxdy/(L_x)(L_y)

Clarifying, x and y are my variables, L_x is the x length of my object, and L_y is the length in the y direction. r_x and r_y are the distances or "shifts" of my axis from the center of mass in the x and y directions respectively.

Here's what I got (after quite a bit of simplification)

M [ (L_x^2)/3 - 2(L_x)(r_x) +3r_x^2 + (L_y^2)/3 - 2(L_y)(r_y) + 3r_y^2]

Anyone care to check my work? Or at least my initial setup? I didn't really get as much out of moments as I could've in my mechanics class, so I took this opportunity to brush up on them.
Btw I'm integrating a uniform density rectangular area moment. I hope you followed that lol
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top