MHB What is the Value of f(2009) in the Given Recursive Sequence?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sequence
AI Thread Summary
The recursive sequence defined by f(n+3) = (f(n) - 1) / (f(n) + 1) with f(5) = 10 exhibits periodic behavior with a period of 4. The sequence can be expressed as a0 = 10, a1 = 9/11, a2 = -1/10, and a3 = -11/9. Since 668 is divisible by 4, the value of f(2009) corresponds to f(5), which is 10. Thus, the value of f(2009) is 10. The periodic nature of the sequence simplifies the calculation significantly.
Albert1
Messages
1,221
Reaction score
0
$f(5)=10$

$f(n+3)=\dfrac {f(n)-1}{f(n)+1},\,\, for \,\, all \,\,n\in N$

find f(2009)
 
Mathematics news on Phys.org
Re: find number of a sequence

Albert said:
$f(5)=10$

$f(n+3)=\dfrac {f(n)-1}{f(n)+1},\,\, for \,\, all \,\,n\in N$

find f(2009)
because of periodicity: f(5)=10, f(8)=9/11, f(11)=-1/10, f(14)=-11/9; f(17)=10, ...

f(2009)=10

.
 
Re: find number of a sequence

Albert said:
$f(5)=10$

$f(n+3)=\dfrac {f(n)-1}{f(n)+1},\,\, for \,\, all \,\,n\in N$

find f(2009)

An equivalent and more simple statement of the problem is: given the difference equation...

$$ a_{n+1}= \frac{a_{n}-1}{a_{n}+1}\ ,\ a_{0}=10\ (1)$$

... find $a_{668}$...

Before trying a 'direct attack' to the non linear d.e. (1) it is better to search that (1) has some periodic solution, i.e. a solution where $a_{n+k}=a_{n}$. Let's set $a_{n+k}=y$ and $a_{n}=x$. We start with k=1 we obtain ...

$$y= \frac{x-1}{x+1}\ (2)$$

... and imposing y=x we arrive to the equation...

$$ x^{2}+1=0\ (3)$$

... which has no real solutions. Setting k=2 we arrive to the [surprisingly simple...] equation...

$$y = - \frac{1}{x}\ (4)$$

... that pratically solves the problem. The (4) indeed indicates that the solution has periodicity 4 and, given $a_{0}$, we have...

$$a_{0}\ ,\ \frac{a_{0}-1}{a_{0}+1}\ ,\ - \frac{1}{a_{0}}\ ,\ -\frac {a_{0}+1}{a_{0}-1}\ , \ a_{0}\ ,\ ...\ (5)$$

In our case is $a_{0}=10$ so that the other terms are $a_{1}= \frac{9}{11}$, $a_{2}= - \frac{1}{10}$, and $a_{3}= - \frac{11}{9}$ . Now 668 is divisible by 4 so that is $a_{668}=a_{0}=10$...

Kind regards

$\chi$ $\sigma$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
1K
Replies
1
Views
1K
Replies
27
Views
5K
Replies
11
Views
2K
Replies
4
Views
3K
Replies
4
Views
1K
Replies
1
Views
1K
Back
Top