Find positive integers x,y,z in 1/x+1/y=7/8(x,y∈N)

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integers Positive
Click For Summary
SUMMARY

The discussion focuses on solving equations involving positive integers \(x\), \(y\), and \(z\) that satisfy the conditions \( \frac{1}{x} + \frac{1}{y} = \frac{7}{8} \) and \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{6}{24} \). The participants emphasize the importance of considering permutations of \(x\), \(y\), and \(z\) to find all possible solutions. Additionally, the concept of Egyptian fractions is introduced as a method for expressing fractions as sums of distinct unit fractions, which is relevant to the problem at hand.

PREREQUISITES
  • Understanding of Egyptian fractions
  • Basic algebraic manipulation
  • Knowledge of positive integer properties
  • Familiarity with equations involving fractions
NEXT STEPS
  • Research methods for solving equations with Egyptian fractions
  • Explore the properties of positive integers in fraction equations
  • Learn about the theory behind unique representations of fractions
  • Investigate algorithms for finding integer solutions to linear equations
USEFUL FOR

Mathematicians, educators, and students interested in number theory, particularly those exploring integer solutions to fractional equations and Egyptian fractions.

Albert1
Messages
1,221
Reaction score
0
$(1)$ $\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{7}{8}(x,y\in N)$
$find$: $x,y$
$(2)$ $\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{12}(x,y\in N)$
$find$: $x,y$
$(3)$ $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac {1}{z}=\dfrac{6}{24}(x,y,z\in N)$
$find$: $x,y,z$
 
Mathematics news on Phys.org
Albert said:
$(1)$ $\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{7}{8}(x,y\in N)$
$find$: $x,y$
$(2)$ $\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{12}(x,y\in N)$
$find$: $x,y$
$(3)$ $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac {1}{z}=\dfrac{6}{24}(x,y,z\in N)$
$find$: $x,y,z$

without loss of generality we can take x <=y <=z as any permutation can give ans

for (1)

$\frac{7}{8} > \frac{1}{x} >= \frac{7}{16}$ or so x = 2 and it does not give y integer so no solution

for (2)

$\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}$

or $\dfrac{1}{2} > \dfrac{1}{x} >= \dfrac{1}{4}$ x = 4 or 3 , x=4 gives y =4 and x= 3 gives y = 6 so solution set(4,4), (3,6), (6,3)
 
Last edited:
kaliprasad said:
without loss of generality we can take x <=y <=z as any permutation can give ans

for (1)

$\frac{7}{8} > \frac{1}{x} >= \frac{7}{16}$ or so x = 2 and it does not give y integer so no solution

for (2)

$\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}$

or $\dfrac{1}{2} > \dfrac{1}{x} >= \dfrac{1}{4}$ x = 2 or 3 , x=2 gives y =2 and x= 3 gives y = 6 so solution set(2,2), (3,6), (6,3)
set (x,y)=(2,2) is not a solution ,it should be (x,y)=(4,4)
 
Albert said:
set (x,y)=(2,2) is not a solution ,it should be (x,y)=(4,4)

you are right I have done correction inline . Thanks
 
Albert said:
$(1)$ $\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{7}{8}(x,y\in N)$
$find$: $x,y$
$(2)$ $\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{12}(x,y\in N)$
$find$: $x,y$
$(3)$ $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac {1}{z}=\dfrac{6}{24}(x,y,z\in N)$
$find$: $x,y,z$
hint of (3)$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac {1}{z}=\dfrac{6}{24}$
let :$\dfrac{6}{24}=\dfrac {a+b+c}{24}$
we see $a+b+c=6$
and $24$ is a multiple of $a,b,$ and $c\, (a,b,c\in N)$
with this little trick ,this kind of question becomes so easy
 
Albert said:
hint of (3)$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac {1}{z}=\dfrac{6}{24}$
let :$\dfrac{6}{24}=\dfrac {a+b+c}{24}$
we see $a+b+c=6$
and $24$ is a multiple of $a,b,$ and $c\, (a,b,c\in N)$
with this little trick ,this kind of question becomes so easy

The above hint is not correct because

x= 6, y = 16, z= 48 is solution not provided by above
 
Albert said:
hint of (3)$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac {1}{z}=\dfrac{6}{24}$
let :$\dfrac{6}{24}=\dfrac {a+b+c}{24}$
we see $a+b+c=6$
and $24$ is a multiple of $a,b,$ and $c\, (a,b,c\in N)$
with this little trick ,this kind of question becomes so easy
[sp]But that method does not find all the solutions, for example $\dfrac6{24} = \dfrac15 + \dfrac1{21} + \dfrac1{420}$.[/sp]
 
yes you are right,that is why I express (3) as:
$\dfrac{6}{24} = \dfrac1{x} + \dfrac1{y} + \dfrac1{z}$
if I express (3) as :
$\dfrac{12}{48} = \dfrac1{x} + \dfrac1{y} + \dfrac1{z}$
and using the same method we will get more solutions,up to now I did not see
any theorem mentioning to find the amounts of solutions of this kind ,may be someone can tell me
(if both numerator and denominator are fixed,then the solutions will be fixed,if both
are multiplied by some factor k,then may be we will get more answers)
 
Last edited:
Albert said:
any theorem mentioning to find the amounts of solutions of this kind ,may be someone can tell me
These are known as Egyptian fractions.
 
  • #10
Opalg said:
These are known as Egyptian fractions.
Can we get all the amounts of solutions of this kind ?
Is there any formula to express it ?
 

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K