Find primitives of function (1+4x)/sqrt(1 + x + 2x^2)

  • Thread starter Thread starter Taryn
  • Start date Start date
  • Tags Tags
    Function
Taryn
Messages
63
Reaction score
0
This is a practice exam question that I have been given!
Find the primitives of the functions
(1+4x)/(sqrt(1+x+2x^2))

My question is 1. is a primitive the antiderivative? I don't remember my lecturer using primitive during our course!
 
Physics news on Phys.org
It is basically asking you to find:

\int \frac{1+4x}{\sqrt{1+x+2x^{2}}} \; dx

A primitive is an antiderivative.

So set u = 1+x+2x^{2}

Then du = 4x+1 \; dx and you end up with \int u^{-\frac{1}{2}} \; du. All the primitives mean that you add the integration constant C.
 
Last edited:
ahhh thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top