Find Solution to Power & Resistance w/ 10 Ohm Resistors

  • Context: MHB 
  • Thread starter Thread starter dstorm
  • Start date Start date
  • Tags Tags
    Power Resistance
Click For Summary
SUMMARY

The minimum number of 10 ohm resistors required to achieve a total resistance of 10 ohms while dissipating at least 5.0 W is 9 resistors arranged in a 3x3 configuration. This setup combines resistors in series and parallel, where each resistor can handle a maximum of 1.0 W. By placing 2 resistors in series and then connecting them in parallel with another 2 in series, the total resistance remains 10 ohms, but the power dissipation must be calculated to ensure it meets the requirement.

PREREQUISITES
  • Understanding of Ohm's Law
  • Knowledge of series and parallel resistor configurations
  • Ability to calculate total resistance in series and parallel
  • Familiarity with power dissipation in resistors
NEXT STEPS
  • Learn about calculating total resistance in complex resistor networks
  • Study power distribution in series and parallel circuits
  • Explore practical applications of resistor configurations in electronic circuits
  • Investigate the thermal limits and safety factors for resistors in high-power applications
USEFUL FOR

Electronics students, hobbyists designing circuits, and engineers working with resistor configurations in power management applications.

dstorm
Messages
4
Reaction score
0
Here is the question: You are given a number of 10 ohm resistors, each capable of dissipating only 1.0 W without being destroyed. What is the minimum number of such resistors that you need to combine in series or in parallel to make a 10 ohm resistance that is capable of dissipating at least 5.0 W?

When I attempted to do this problem, I had thought that power added in parallel, so I assumed that it would take 5 resistors. However, after checking to see if I was correct in the back of the book, I realized that I was doing something wrong. So now I'm left with the rules of resistance in parallel, being Rp(total) = Sum(Rp(i)) and the rule of resistance in series, being 1/(Rs(total)) = Sum(1/(Rs(i))). However, from here, I'm not sure how to manipulate these equations. How would I go about this problem? I'm sorry that I'm not very far along on it. It just stumped me.
 
Mathematics news on Phys.org
dstorm said:
Here is the question: You are given a number of 10 ohm resistors, each capable of dissipating only 1.0 W without being destroyed. What is the minimum number of such resistors that you need to combine in series or in parallel to make a 10 ohm resistance that is capable of dissipating at least 5.0 W?

When I attempted to do this problem, I had thought that power added in parallel, so I assumed that it would take 5 resistors. However, after checking to see if I was correct in the back of the book, I realized that I was doing something wrong. So now I'm left with the rules of resistance in parallel, being Rp(total) = Sum(Rp(i)) and the rule of resistance in series, being 1/(Rs(total)) = Sum(1/(Rs(i))). However, from here, I'm not sure how to manipulate these equations. How would I go about this problem? I'm sorry that I'm not very far along on it. It just stumped me.

Hi dstorm! Welcome to MHB! :)

If you put 2 resistors in series, the total resistance doubles.
And if you put 2 resistors in parallel, the total resistance is halved.

So suppose we put 2 in series and put them parallel to another 2 in series.
Then we will still have 10 Ohm as the total resistance.
What will the power dissipation in each resistor be?
 
I like Serena said:
Hi dstorm! Welcome to MHB! :)

If you put 2 resistors in series, the total resistance doubles.
And if you put 2 resistors in parallel, the total resistance is halved.

So suppose we put 2 in series and put them parallel to another 2 in series.
Then we will still have 10 Ohm as the total resistance.
What will the power dissipation in each resistor be?

Thanks! So the total power would be 4 W, because each can produce 1 W of power, right? So in order to get at least 5 W of power, we would need 9 resistors in a 3x3 form because the parallel ones would divide the resistance by 3 and the series ones would triple the resistance, thus equalizing it back to 10 ohms. So you can kinda combine the equations?
 
dstorm said:
Thanks! So the total power would be 4 W, because each can produce 1 W of power, right? So in order to get at least 5 W of power, we would need 9 resistors in a 3x3 form because the parallel ones would divide the resistance by 3 and the series ones would triple the resistance, thus equalizing it back to 10 ohms. So you can kinda combine the equations?

Yeah.
Theoretically a more convoluted circuit could be set up.
But then you get fractions that simply won't come out as 10 Ohm any more.
And anyway, the current has to be distributed evenly to avoid resistors from blowing up.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
716
  • · Replies 7 ·
Replies
7
Views
2K