Find Solution to Power & Resistance w/ 10 Ohm Resistors

  • Context: MHB 
  • Thread starter Thread starter dstorm
  • Start date Start date
  • Tags Tags
    Power Resistance
Click For Summary

Discussion Overview

The discussion revolves around a problem involving the combination of 10 ohm resistors to achieve a total resistance of 10 ohms while ensuring the circuit can dissipate at least 5.0 W. The participants explore different configurations of resistors in series and parallel, discussing the implications for power dissipation and resistance calculations.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant initially believed that power adds in parallel and suggested that 5 resistors would suffice, but later expressed uncertainty about their approach.
  • Another participant explained that combining 2 resistors in series doubles the total resistance, while combining 2 in parallel halves the total resistance.
  • A suggestion was made to arrange 9 resistors in a 3x3 configuration to achieve the required power dissipation while maintaining the total resistance at 10 ohms.
  • Concerns were raised about the complexity of more convoluted circuits potentially leading to non-integer resistance values and the need for even current distribution to prevent resistor failure.

Areas of Agreement / Disagreement

Participants express differing views on the configurations needed to achieve the desired resistance and power dissipation, with no consensus reached on the optimal solution.

Contextual Notes

Participants have not fully resolved the mathematical steps involved in calculating the total resistance and power dissipation for various configurations. There is also uncertainty regarding the implications of current distribution across the resistors.

dstorm
Messages
4
Reaction score
0
Here is the question: You are given a number of 10 ohm resistors, each capable of dissipating only 1.0 W without being destroyed. What is the minimum number of such resistors that you need to combine in series or in parallel to make a 10 ohm resistance that is capable of dissipating at least 5.0 W?

When I attempted to do this problem, I had thought that power added in parallel, so I assumed that it would take 5 resistors. However, after checking to see if I was correct in the back of the book, I realized that I was doing something wrong. So now I'm left with the rules of resistance in parallel, being Rp(total) = Sum(Rp(i)) and the rule of resistance in series, being 1/(Rs(total)) = Sum(1/(Rs(i))). However, from here, I'm not sure how to manipulate these equations. How would I go about this problem? I'm sorry that I'm not very far along on it. It just stumped me.
 
Mathematics news on Phys.org
dstorm said:
Here is the question: You are given a number of 10 ohm resistors, each capable of dissipating only 1.0 W without being destroyed. What is the minimum number of such resistors that you need to combine in series or in parallel to make a 10 ohm resistance that is capable of dissipating at least 5.0 W?

When I attempted to do this problem, I had thought that power added in parallel, so I assumed that it would take 5 resistors. However, after checking to see if I was correct in the back of the book, I realized that I was doing something wrong. So now I'm left with the rules of resistance in parallel, being Rp(total) = Sum(Rp(i)) and the rule of resistance in series, being 1/(Rs(total)) = Sum(1/(Rs(i))). However, from here, I'm not sure how to manipulate these equations. How would I go about this problem? I'm sorry that I'm not very far along on it. It just stumped me.

Hi dstorm! Welcome to MHB! :)

If you put 2 resistors in series, the total resistance doubles.
And if you put 2 resistors in parallel, the total resistance is halved.

So suppose we put 2 in series and put them parallel to another 2 in series.
Then we will still have 10 Ohm as the total resistance.
What will the power dissipation in each resistor be?
 
I like Serena said:
Hi dstorm! Welcome to MHB! :)

If you put 2 resistors in series, the total resistance doubles.
And if you put 2 resistors in parallel, the total resistance is halved.

So suppose we put 2 in series and put them parallel to another 2 in series.
Then we will still have 10 Ohm as the total resistance.
What will the power dissipation in each resistor be?

Thanks! So the total power would be 4 W, because each can produce 1 W of power, right? So in order to get at least 5 W of power, we would need 9 resistors in a 3x3 form because the parallel ones would divide the resistance by 3 and the series ones would triple the resistance, thus equalizing it back to 10 ohms. So you can kinda combine the equations?
 
dstorm said:
Thanks! So the total power would be 4 W, because each can produce 1 W of power, right? So in order to get at least 5 W of power, we would need 9 resistors in a 3x3 form because the parallel ones would divide the resistance by 3 and the series ones would triple the resistance, thus equalizing it back to 10 ohms. So you can kinda combine the equations?

Yeah.
Theoretically a more convoluted circuit could be set up.
But then you get fractions that simply won't come out as 10 Ohm any more.
And anyway, the current has to be distributed evenly to avoid resistors from blowing up.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
732
  • · Replies 7 ·
Replies
7
Views
2K