Find the eigenvalues of a 3x3 matrix

Click For Summary
SUMMARY

The discussion centers on finding the eigenvalues of a 3x3 matrix related to a mass-spring system. The matrix provided is defined as follows: $$ A = \begin{pmatrix} -\omega^2 + \frac{k}{m} & -\frac{k}{m} & 0 \\ -\frac{k}{M} & -\omega^2 + 2\frac{k}{M} & -\frac{k}{M} \\ 0 & -\frac{k}{m} & -\omega^2 + \frac{k}{m} \end{pmatrix}. $$ Participants clarify that the eigenvalues can be found by solving the determinant equation $\det(A - xI) = 0$, leading to the correct eigenvalues: $\omega^2 = 0, \frac{k}{m}, \frac{k}{m} + 2\frac{k}{M}$. The discussion highlights the importance of correctly setting variables and understanding the determinant's role in finding eigenvalues.

PREREQUISITES
  • Understanding of eigenvalues and eigenvectors
  • Familiarity with determinants of matrices
  • Knowledge of mass-spring systems in physics
  • Proficiency in solving polynomial equations
NEXT STEPS
  • Study the process of calculating determinants for 3x3 matrices
  • Learn about eigenvalue problems in linear algebra
  • Explore the applications of eigenvalues in mechanical systems
  • Investigate the quadratic formula and its applications in solving polynomial equations
USEFUL FOR

Students and professionals in physics and engineering, particularly those working with mechanical systems and linear algebra, will benefit from this discussion on eigenvalues and matrix determinants.

happyparticle
Messages
490
Reaction score
24
Homework Statement
Find the eigenvalues of a 3x3 matrix
Relevant Equations
##\begin{pmatrix} - \omega^2 +\frac{k}{m} &-\frac{k}{m} &0\\ -\frac{k}{M}& - \omega^2 + 2 \frac{k}{M} &-\frac{k}{M} \\
0&- \frac{k}{m} & -\omega^2 + \frac{k}{m}
\end{pmatrix} \begin{pmatrix}A_1\\A_2\\A_3 \end{pmatrix} =0##
Hi,
I have a 3 mass system. ##M \neq m##

I found the forces and I get the following matrix.

I have to find ##\omega_1 , \omega_2, \omega_3## I know I have to find the values of ##\omega## where det(A) = 0, but with a 3x3 matrix it is a nightmare. I can't find the values.

I'm wondering if there's another way to have the eigenvalues.
WxfG6.png

##\begin{pmatrix} - \omega^2 +\frac{k}{m} &-\frac{k}{m} &0\\ -\frac{k}{M}& - \omega^2 + 2 \frac{k}{M} &-\frac{k}{M} \\
0&- \frac{k}{m} & -\omega^2 + \frac{k}{m}
\end{pmatrix} \begin{pmatrix}A_1\\A_2\\A_3 \end{pmatrix} =0
##
 
Physics news on Phys.org
It is not a nightmare. Set ##W=-\omega^2-q-x\, , \,V=W-q\, , \,q=-k/M## and develop the determinant along the first row. It took me eight lines to find the eigenvalues.
 
fresh_42 said:
It is not a nightmare.
It's perhaps the sort of thing some people have nightmares about!
 
fresh_42 said:
It is not a nightmare. Set ##W=-\omega^2-q-x\, , \,V=W-q\, , \,q=-k/M## and develop the determinant along the first row. It took me eight lines to find the eigenvalues.

I'm not sure to understand the way you set the variables. Why you have ##x## and why not ##W = \omega^2 + \frac{k}{m}##
 
The eigenvalues are the roots of the polynomial ##\det (A-x\cdot I).## Hence we have ##a_{ii}-x## on the diagonal. You can also work with ##W-x## instead. I simply found it more convenient to calculate ##\det\left(\begin{bmatrix}
W&q&0\\q&V&q\\0&q&W
\end{bmatrix}\right) ## and replace the actual values afterwards rather than
##\det\left(\begin{bmatrix}
W-x&q&0\\q&W-q-x&q\\0&q&W-x
\end{bmatrix}\right) ##. It's a matter of taste.
 
You typed ##q = \frac{k}{M}##, but you also replaced ##\frac{k}{m}## by q even if ##M \neq m##. I don't know if it matters.

At the end I have ##VW^2 - \frac{2k^2W}{mM}## = 0. I didn't replace ##\frac{k}{m}##

Using quadratic formula I have ##W = 0 ## and ##W = -4k^2/mM##

then
##-\omega^2 -\frac{k}{m} - x = \frac{-4k^2}{mM}##

It Doesn't give me the right eigenvalues which are, ##\omega^2= 0, k/m , k/m + 2k/M##

As usual I probably just don't understood correctly the explanation.
 
You have to solve for the determinant ##\det(A-xI)## not just ##\det A##.
EpselonZero said:
You typed ##q = \frac{k}{M}##, but you also replaced ##\frac{k}{m}## by q even if ##M \neq m##. I don't know if it matters.

At the end I have ##VW^2 - \frac{2k^2W}{mM}## = 0. I didn't replace ##\frac{k}{m}##

Using quadratic formula I have ##W = 0 ## and ##W = -4k^2/mM##

then
##-\omega^2 -\frac{k}{m} - x = \frac{-4k^2}{mM}##

It Doesn't give me the right eigenvalues which are, ##\omega^2= 0, k/m , k/m + 2k/M##

As usual I probably just don't understood correctly the explanation.
You are right. I made a mistake as I used only one mass ##M=m##. Sorry.

My corrected result is ##\det (A-xI)= \ldots##
$$
0=W(VW-2qQ)=\left(-\omega^2+\dfrac{k}{m}-x\right)\cdot\left(\left(-\omega^2+\dfrac{k}{m}-x\right)\cdot \left(-\omega^2+2\dfrac{k}{M}-x\right)-2\dfrac{k^2}{mM}\right)
$$
which results in ##x=-\omega^2+\dfrac{k}{m}## and the quadratic equation
$$
0=x^2+2x\left(\omega^2-\dfrac{1}{2}\cdot\dfrac{k}{m}-\dfrac{k}{M}\right)+\left(\omega^4-\omega^2\dfrac{k}{m}-2\omega^2\dfrac{k}{M}\right)
$$
which is easy to solve (if I haven't made a mistake again).

In case ##\omega ## was your variable, then I do not understand where the square comes from. But then your calculation was correct. I also get ##0\, , \,\dfrac{k}{m}\, , \,\dfrac{k}{m}+2\dfrac{k}{M}.##
 
Last edited:
  • Like
Likes   Reactions: happyparticle
I may have misunderstood the problem. You said "I need to find the eigenvalues of a ##3\times 3## matrix" and then came the matrix ... or did you mean I need to solve ##\det (A-\omega I)=0## with eigenvalues ##\omega ##? I thought it was the first question and then we need a variable, say ##x## for the polynomial. The second possibility has ##\omega ## as variable, or ##\omega^2## in your case. But why ##\omega^2?##

So what is the matrix you want to find the eigenvalues to?
Or, what is the cubic polynomial you want to find the roots to?
 
fresh_42 said:
I may have misunderstood the problem. You said "I need to find the eigenvalues of a ##3\times 3## matrix" and then came the matrix ... or did you mean I need to solve ##\det (A-\omega I)=0## with eigenvalues ##\omega ##? I thought it was the first question and then we need a variable, say ##x## for the polynomial. The second possibility has ##\omega ## as variable, or ##\omega^2## in your case. But why ##\omega^2?##

So what is the matrix you want to find the eigenvalues to?
Or, what is the cubic polynomial you want to find the roots to?
Sorry I found my errors. You explanation was perfect. I just didn't realize I don't need to go that far to find the roots for ##\omega##

Thanks!
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 11 ·
Replies
11
Views
910
Replies
9
Views
2K
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K