Find the exact sum of the series 1/(1⋅2⋅3⋅4)+1/(5⋅6⋅7⋅8)+....

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Series Sum
Click For Summary

Discussion Overview

The discussion centers around finding the exact sum of a specific series involving the reciprocals of products of consecutive integers. The series is presented as a mathematical problem, inviting exploration of potential solutions and methods of summation.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents the series and asks for its exact sum.
  • Several participants express appreciation for the contributions and solutions provided, indicating a collaborative atmosphere.
  • Another participant recalls encountering the problem previously, suggesting a shared familiarity with the topic among some members.

Areas of Agreement / Disagreement

The discussion does not appear to reach a consensus on the exact sum of the series, as no solutions or methods are explicitly detailed or agreed upon.

Contextual Notes

There are no specific mathematical steps or assumptions provided in the posts, leaving the discussion open-ended regarding the approach to summing the series.

Who May Find This Useful

Participants interested in series summation, mathematical problem-solving, or those who enjoy collaborative discussions on mathematical challenges may find this thread engaging.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the exact sum of the series:

$$S = \frac{1}{1\cdot 2\cdot 3\cdot 4}+\frac{1}{5 \cdot 6 \cdot 7 \cdot 8}+...$$
 
Physics news on Phys.org
First observe that the sum is $\displaystyle \sum_{k \ge 0} \frac{(4k)!}{(4k+4)!}$ and more crucially recall that $\displaystyle \text{B}(x,y)=\frac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}$.
Write $\displaystyle \frac{(4k)!}{(4k+4)!} = \frac{\Gamma(4k+1)}{\Gamma(4k+5)} = \frac{\Gamma(4k+1)\Gamma(4)}{3! ~\Gamma(4k+5)} = \frac{1}{6}\text{B}(4k+1, 4) = \frac{1}{6}\int_0^1t^{4k}(1-t)^{3}\,{dt}$ so

$\displaystyle \sum_{k \ge 0} \frac{(4k)!}{(4k+4)!} = \sum_{k \ge 0} \frac{1}{6}\int_0^1t^{4k}(1-t)^{3}\,{dt} = \frac{1}{6}\int_0^1\sum_{k \ge 0} t^{4k}(1-t)^{3}\,{dt} = \frac{1}{6}\int_0^1 \frac{(1-t)^3}{1-t^4}\,{dt}.$

The integral easily evaluates to $\displaystyle \frac{1}{4} \left(\log(64)-\pi\right) $ so the value sought is $\displaystyle \frac{1}{24} \left(\log(64)-\pi\right).$
 
June29 said:
First observe that the sum is $\displaystyle \sum_{k \ge 0} \frac{(4k)!}{(4k+4)!}$ and more crucially recall that $\displaystyle \text{B}(x,y)=\frac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}$.
Write $\displaystyle \frac{(4k)!}{(4k+4)!} = \frac{\Gamma(4k+1)}{\Gamma(4k+5)} = \frac{\Gamma(4k+1)\Gamma(4)}{3! ~\Gamma(4k+5)} = \frac{1}{6}\text{B}(4k+1, 4) = \frac{1}{6}\int_0^1t^{4k}(1-t)^{3}\,{dt}$ so

$\displaystyle \sum_{k \ge 0} \frac{(4k)!}{(4k+4)!} = \sum_{k \ge 0} \frac{1}{6}\int_0^1t^{4k}(1-t)^{3}\,{dt} = \frac{1}{6}\int_0^1\sum_{k \ge 0} t^{4k}(1-t)^{3}\,{dt} = \frac{1}{6}\int_0^1 \frac{(1-t)^3}{1-t^4}\,{dt}.$

The integral easily evaluates to $\displaystyle \frac{1}{4} \left(\log(64)-\pi\right) $ so the value sought is $\displaystyle \frac{1}{24} \left(\log(64)-\pi\right).$

Well done, June29! Thankyou for your participation.

Maybe you will share with the forum, your evaluation of the last integral in your solution?
 
lfdahl said:
Well done, June29! Thankyou for your participation.

Maybe you will share with the forum, your evaluation of the last integral in your solution?
Thank you for the wonderful problems you post!

$$\displaystyle \frac{(1-x)^3}{1-x^4} = \frac{(1-x)^3}{(1-x)(1+x)(1+x^2)} = \frac{(1-x)^2}{(1+x)(1+x^2)}$$

Write $(1-x)^2 = 1-2x+x^2 = 2(1+x^2)-(1+x)^2$

It becomes $ \displaystyle \frac{2(1+x^2)-(1+x)^2}{(1+x)(1+x^2)} = \frac{2}{1+x}-\frac{1+x}{1+x^2}$

or $\displaystyle \frac{2}{1+x}-\frac{1}{1+x^2}-\frac{1}{2}\frac{2x}{1+x^2}$, which readily integrates to

$\displaystyle 2 \log(1+x)-\arctan(x)-\frac{1}{2}\log(1+x^2)\bigg|_0^{1} = \frac{1}{4}(\log(64)-\pi). $

I'd be interested in your solution if it isn't the same as mine.
 
June29 said:
Thank you for the wonderful problems you post!

$$\displaystyle \frac{(1-x)^3}{1-x^4} = \frac{(1-x)^3}{(1-x)(1+x)(1+x^2)} = \frac{(1-x)^2}{(1+x)(1+x^2)}$$

Write $(1-x)^2 = 1-2x+x^2 = 2(1+x^2)-(1+x)^2$

It becomes $ \displaystyle \frac{2(1+x^2)-(1+x)^2}{(1+x)(1+x^2)} = \frac{2}{1+x}-\frac{1+x}{1+x^2}$

or $\displaystyle \frac{2}{1+x}-\frac{1}{1+x^2}-\frac{1}{2}\frac{2x}{1+x^2}$, which readily integrates to

$\displaystyle 2 \log(1+x)-\arctan(x)-\frac{1}{2}\log(1+x^2)\bigg|_0^{1} = \frac{1}{4}(\log(64)-\pi). $

I'd be interested in your solution if it isn't the same as mine.

Thankyou for your kind words, and for showing the last part of your solution! I guess, there is no need to post the suggested solution, since it is very close to yours!(Nod)
 
Wait... I actually came across this problem years ago (IMC, right?)! (Giggle)
Generalisation: $$\displaystyle \sum_{k \ge 0 }\prod_{1 \le r \le j}\frac{1}{(n k+r)} = \frac{\sqrt{\pi}}{n(j-1)!}\sum_{0 \le r < j}\binom{j-1}{r}\frac{(-1)^r \Gamma( \frac{r+1}{n})}{\Gamma(\frac{r+1 }{n}+\frac{1}{2})} $$

Cause LHS can be written as $\displaystyle \frac{1}{(j-1)!}\int_{0}^{1}\frac{(1-t)^{j-1}}{1-t^n}\;{dt}$ (same as before).

We can also prove the OP via partial fractions alone, but it's quite laborious!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
1K