joao_pimentel
- 68
- 0
Hi guys... this problem is really annoying me
How to find:
\displaystyle{\sum_{k=0}^{n}\frac{1}{2^k+3^k}}
I can clearly see that it converges
\frac{1}{3^k+3^k}<\frac{1}{2^k+3^k}<\frac{1}{2^k+2^k}
\sum_{k=0}^{\infty}\frac{1}{3^k+3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+2^k}
\frac{1}{2}\sum_{k=0}^{\infty}\frac{1}{3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\frac{1}{2}\sum_{k=0}^{\infty}\frac{1}{2^k}
\frac{1}{2}\frac{1}{1-1/3}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\frac{1}{2}\frac{1}{1-1/2}
\frac{3}{4}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<1
But how do I find the general expression from k=0 to 'n' or even the exact value as n goes to infinity?
Thanks in advance
How to find:
\displaystyle{\sum_{k=0}^{n}\frac{1}{2^k+3^k}}
I can clearly see that it converges
\frac{1}{3^k+3^k}<\frac{1}{2^k+3^k}<\frac{1}{2^k+2^k}
\sum_{k=0}^{\infty}\frac{1}{3^k+3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+2^k}
\frac{1}{2}\sum_{k=0}^{\infty}\frac{1}{3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\frac{1}{2}\sum_{k=0}^{\infty}\frac{1}{2^k}
\frac{1}{2}\frac{1}{1-1/3}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\frac{1}{2}\frac{1}{1-1/2}
\frac{3}{4}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<1
But how do I find the general expression from k=0 to 'n' or even the exact value as n goes to infinity?
Thanks in advance