MHB Find the integer values of p and q.

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For what integers p and q is where $$x=\sqrt {29}+\sqrt {89}$$ is a root of the equation $$x^4+px^2+q=0$$
 
Mathematics news on Phys.org
anemone said:
For what integers p and q is where $$x=\sqrt {29}+\sqrt {89}$$ is a root of the equation $$x^4+px^2+q=0$$
If $x=\sqrt {29}+\sqrt {89}$ then $x^2 = 29+89 + 2\sqrt{29*89} = 118 + 2\sqrt{29*89}$, and $(x^2 - 118)^2 = 4*29*89$. That is, $x^4 - 236x^2 + (118^2 - 4*29*89) = 0$, or $x^4 - 236 x^2 + 3600 = 0.$ So $p=-236,\ q=3600.$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top