Find the magnetic induction vector

Click For Summary
To find the magnetic induction vector for the second conductor, the distance from the point to the conductor must be determined, which is not provided in the problem. Several scenarios can be considered, including the point being between the conductors, to the left of the first conductor, equidistant from both conductors, or forming a right triangle. The discussion highlights the need for additional information to accurately solve the problem. The participants suggest that the problem may have been intended to specify the point's location more clearly. Overall, the ambiguity in the problem statement complicates finding a definitive solution.
LinguaBrous
Messages
2
Reaction score
0
Homework Statement
Two infinitely long parallel conductors located at a distance of 5 cm from each other carry currents of 1 A and 2 A, respectively, in different directions. What is the direction and magnitude of the magnetic induction vector at a point located at a distance of 3 cm from the first conductor?
Relevant Equations
##\mathbf{B} = \frac{\mu_0 \cdot I}{2\pi \cdot r}##
I can find the magnetic induction vector of the first conductor at a given point using the formula (its 6,667*10^-7 Tl) but I don’t understand what needs to be done with the second conductor. I have come across similar problems in which, however, the distance from the second conductor to the point was given. In those problems, the vector was found using the cosine theorem or other geometric laws. Here I cannot figure out how I should understand at what distance the point is from the second conductor. I guess that I should consider several cases and get several answers for this problem but I don’t quite understand what these cases could be (like building a triangle from 3 points and adding 1 degree to the angle or something like that) Thanks everyone for any help in advance.
 
Physics news on Phys.org
There is certainly missing information. Maybe it was supposed to say "a point between them".
 
haruspex said:
There is certainly missing information. Maybe it was supposed to say "a point between them".
This is the exact text of the problem that my professor wrote on the board.

In any case, during the night I only reached the following: there are 4 cases to consider.

The point lies between them.

The point lies to the left of the first conductor.

The point lies at the same distance from the second conductor as from the first (equilateral triangle).

The point lies so that a right triangle is formed.

Maybe there are some other cases that I have not considered, but for which a solution can be found using this data? Or maybe it's not solved like that at all)
 
LinguaBrous said:
This is the exact text of the problem that my professor wrote on the board.

In any case, during the night I only reached the following: there are 4 cases to consider.

The point lies between them.

The point lies to the left of the first conductor.

The point lies at the same distance from the second conductor as from the first (equilateral triangle).

The point lies so that a right triangle is formed.

Maybe there are some other cases that I have not considered, but for which a solution can be found using this data? Or maybe it's not solved like that at all)
The possibilities form a complete circle around the first conductor.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 6 ·
Replies
6
Views
437
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 0 ·
Replies
0
Views
928
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
1K
Replies
7
Views
971
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K