I made an error in my above post, where I used annual compounding. We want:
$$A_{n+1}=1.025^2A_{n}-W=\left(\frac{41}{40}\right)^2A_{n}-W$$
And so our homogeneous solution will take the form:
$$h_n=c_1\left(\frac{41}{40}\right)^{2n}$$
Our particular solution will take the form:
$$p_n=B$$
Substitution into the recursion yields:
$$B-\left(\frac{41}{40}\right)^2B=-W$$
$$\left(\frac{9}{40}\right)^2B=W\implies B=\left(\frac{40}{9}\right)^2W$$
And so by the principle of superposition, we obtain:
$$A_{n}=h_n+p_n=c_1\left(\frac{41}{40}\right)^{2n}+\left(\frac{40}{9}\right)^2W$$
$$A_0=c_1+\left(\frac{40}{9}\right)^2W\implies c_1=A_0-\left(\frac{40}{9}\right)^2W$$
And so our closed form is:
$$A_{n}=\left(A_0-\left(\frac{40}{9}\right)^2W\right)\left(\frac{41}{40}\right)^{2n}+\left(\frac{40}{9}\right)^2W$$
To finish the problem, we want to set:
$$\lim_{n\to\infty}A_n=0$$
In order for that to happen (for the limit to be finite), we need:
$$W=\left(\frac{9}{40}\right)^2A_0$$
Using the value \(A_0=25000\), we then find:
$$W=\frac{10125}{8}=1265.625$$