Find the maximum amount of the equal annual withdrawal

  • Context: MHB 
  • Thread starter Thread starter Joe_1234
  • Start date Start date
  • Tags Tags
    Maximum
Click For Summary
SUMMARY

The maximum amount of equal annual withdrawal from a savings account with an initial deposit of P25,000 at a 5% interest rate, compounded semi-annually, is calculated to be approximately P1265.625. The recursive formula used to derive this amount is \(A_{n+1}=1.025^2A_{n}-W\), leading to the conclusion that \(W=\left(\frac{9}{40}\right)^2A_0\). The final result confirms that the correct answer is closest to P1265.625, which aligns with option C.

PREREQUISITES
  • Understanding of compound interest calculations
  • Familiarity with recursive sequences and their solutions
  • Knowledge of limits in mathematical analysis
  • Ability to manipulate algebraic expressions and equations
NEXT STEPS
  • Study the principles of compound interest and its applications in finance
  • Learn about solving recursive sequences and their applications
  • Explore the concept of limits in calculus and their significance in financial modeling
  • Investigate the use of financial calculators or software for complex withdrawal scenarios
USEFUL FOR

Financial analysts, mathematicians, students studying finance or mathematics, and anyone involved in planning withdrawals from investment accounts.

Joe_1234
Messages
24
Reaction score
0
P25,000 is deposited in a savings account that pays 5% interest, compounded semi-annually. Equal annual withdrawals are to be made from the account, beginning one year from now and continuing forever. The maximum amount of the equal annual withdrawal is closest to
A. P625
B. P1000
C. P1250
D. P1625
 
Physics news on Phys.org
Hello, and welcome to MHB! :)

I would let \(A_n\) be the amount in the account at the end of year \(n\), and \(W\) be the amount withdrawn at the end of year \(n\). Then we may model this problem with the following recursion:

$$A_{n+1}=1.05A_{n}-W$$

Can you give the homogeneous solution (based on the root of the characteristic equation)?
 
I made an error in my above post, where I used annual compounding. We want:

$$A_{n+1}=1.025^2A_{n}-W=\left(\frac{41}{40}\right)^2A_{n}-W$$

And so our homogeneous solution will take the form:

$$h_n=c_1\left(\frac{41}{40}\right)^{2n}$$

Our particular solution will take the form:

$$p_n=B$$

Substitution into the recursion yields:

$$B-\left(\frac{41}{40}\right)^2B=-W$$

$$\left(\frac{9}{40}\right)^2B=W\implies B=\left(\frac{40}{9}\right)^2W$$

And so by the principle of superposition, we obtain:

$$A_{n}=h_n+p_n=c_1\left(\frac{41}{40}\right)^{2n}+\left(\frac{40}{9}\right)^2W$$

$$A_0=c_1+\left(\frac{40}{9}\right)^2W\implies c_1=A_0-\left(\frac{40}{9}\right)^2W$$

And so our closed form is:

$$A_{n}=\left(A_0-\left(\frac{40}{9}\right)^2W\right)\left(\frac{41}{40}\right)^{2n}+\left(\frac{40}{9}\right)^2W$$

To finish the problem, we want to set:

$$\lim_{n\to\infty}A_n=0$$

In order for that to happen (for the limit to be finite), we need:

$$W=\left(\frac{9}{40}\right)^2A_0$$

Using the value \(A_0=25000\), we then find:

$$W=\frac{10125}{8}=1265.625$$
 
MarkFL said:
I made an error in my above post, where I used annual compounding. We want:

$$A_{n+1}=1.025^2A_{n}-W=\left(\frac{41}{40}\right)^2A_{n}-W$$

And so our homogeneous solution will take the form:

$$h_n=c_1\left(\frac{41}{40}\right)^{2n}$$

Our particular solution will take the form:

$$p_n=B$$

Substitution into the recursion yields:

$$B-\left(\frac{41}{40}\right)^2B=-W$$

$$\left(\frac{9}{40}\right)^2B=W\implies B=\left(\frac{40}{9}\right)^2W$$

And so by the principle of superposition, we obtain:

$$A_{n}=h_n+p_n=c_1\left(\frac{41}{40}\right)^{2n}+\left(\frac{40}{9}\right)^2W$$

$$A_0=c_1+\left(\frac{40}{9}\right)^2W\implies c_1=A_0-\left(\frac{40}{9}\right)^2W$$

And so our closed form is:

$$A_{n}=\left(A_0-\left(\frac{40}{9}\right)^2W\right)\left(\frac{41}{40}\right)^{2n}+\left(\frac{40}{9}\right)^2W$$

To finish the problem, we want to set:

$$\lim_{n\to\infty}A_n=0$$

In order for that to happen (for the limit to be finite), we need:

$$W=\left(\frac{9}{40}\right)^2A_0$$

Using the value \(A_0=25000\), we then find:

$$W=\frac{10125}{8}=1265.625$$
Tnx Sir
 

Similar threads

Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 30 ·
2
Replies
30
Views
7K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K