MHB Find the number of real solutions

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The system of equations consists of $x+y=2$ and $xy-z^2=1$. By substituting $y = 2-x$ into the second equation, it simplifies to $(x-1)^2 + z^2 = 0$. This indicates that the only solution occurs when both terms are zero, leading to the solution $(x,y,z) = (1,1,0)$. Therefore, the system has exactly one real solution.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
How many real solutions does the following system have?

$x+y=2$

$xy-z^2=1$
 
Mathematics news on Phys.org
Here is my solution:

Given $x+y = 2$ and $xy-z^2 = 1\Rightarrow xy = 1+z^2 \geq 1$

So $xy\geq 1$ Means either both$x,y$ are positive quantity OR both $x,y$ are negative quantity

But Given $x+y = 2$. So $x,y>0$

Now Using $\bf{A.M\geq G.M}$, we get $\displaystyle \frac{x+y}{2}\geq \sqrt{xy}$

So $xy\leq 1$ and equality hold when $x = y= 1$ but above we have got $xy\geq 1$

So $xy = 1$ means $x=y =1$. So $z=0$

So there is only one solution which is given as $(x,y,z) = (1,1,0)$
 
Last edited by a moderator:
jacks said:
Here is my solution:

Given $x+y = 2$ and $xy-z^2 = 1\Rightarrow xy = 1+z^2 \geq 1$

So $xy\geq 1$ Means either both$x,y$ are positive quantity OR both $x,y$ are negative quantity

But Given $x+y = 2$. So $x,y>0$

Now Using $\bf{A.M\geq G.M}$, we get $\displaystyle \frac{x+y}{2}\geq \sqrt{xy}$

So $xy\leq 1$ and equality hold when $x = y= 1$ but above we have got $xy\geq 1$

So $xy = 1$ means $x=y =1$. So $z=0$

So there is only one solution which is given as $(x,y,z) = (1,1,0)$

Thanks for participating, jacks!

And thanks also for showing us a nice method to solve the problem!:)
 
[sp]Substitute $y = 2-x$ in the second equation: $x(2-x) - z^2 = 1$. Then $-(x-1)^2 - z^2 = 1-1 = 0$, or $(x-1)^2 + z^2 = 0$. So the only solution is $(x,y,z) = (1,1,0).$[/sp]
 
x = 1 - p, y = 1 + p give

xy - z^2 = 1

or 1-p^2 - z^2 = 1 or p^2 + z^ 2 = 0

p = 0 and z = 0 -> x =y = 1 , z = 0

so only one solution
 
Last edited by a moderator:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
6
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
7
Views
3K
Replies
10
Views
2K
Replies
1
Views
1K
Back
Top