MHB Find the number of real solutions

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The system of equations consists of $x+y=2$ and $xy-z^2=1$. By substituting $y = 2-x$ into the second equation, it simplifies to $(x-1)^2 + z^2 = 0$. This indicates that the only solution occurs when both terms are zero, leading to the solution $(x,y,z) = (1,1,0)$. Therefore, the system has exactly one real solution.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
How many real solutions does the following system have?

$x+y=2$

$xy-z^2=1$
 
Mathematics news on Phys.org
Here is my solution:

Given $x+y = 2$ and $xy-z^2 = 1\Rightarrow xy = 1+z^2 \geq 1$

So $xy\geq 1$ Means either both$x,y$ are positive quantity OR both $x,y$ are negative quantity

But Given $x+y = 2$. So $x,y>0$

Now Using $\bf{A.M\geq G.M}$, we get $\displaystyle \frac{x+y}{2}\geq \sqrt{xy}$

So $xy\leq 1$ and equality hold when $x = y= 1$ but above we have got $xy\geq 1$

So $xy = 1$ means $x=y =1$. So $z=0$

So there is only one solution which is given as $(x,y,z) = (1,1,0)$
 
Last edited by a moderator:
jacks said:
Here is my solution:

Given $x+y = 2$ and $xy-z^2 = 1\Rightarrow xy = 1+z^2 \geq 1$

So $xy\geq 1$ Means either both$x,y$ are positive quantity OR both $x,y$ are negative quantity

But Given $x+y = 2$. So $x,y>0$

Now Using $\bf{A.M\geq G.M}$, we get $\displaystyle \frac{x+y}{2}\geq \sqrt{xy}$

So $xy\leq 1$ and equality hold when $x = y= 1$ but above we have got $xy\geq 1$

So $xy = 1$ means $x=y =1$. So $z=0$

So there is only one solution which is given as $(x,y,z) = (1,1,0)$

Thanks for participating, jacks!

And thanks also for showing us a nice method to solve the problem!:)
 
[sp]Substitute $y = 2-x$ in the second equation: $x(2-x) - z^2 = 1$. Then $-(x-1)^2 - z^2 = 1-1 = 0$, or $(x-1)^2 + z^2 = 0$. So the only solution is $(x,y,z) = (1,1,0).$[/sp]
 
x = 1 - p, y = 1 + p give

xy - z^2 = 1

or 1-p^2 - z^2 = 1 or p^2 + z^ 2 = 0

p = 0 and z = 0 -> x =y = 1 , z = 0

so only one solution
 
Last edited by a moderator:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
6
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
7
Views
3K
Replies
10
Views
2K
Replies
1
Views
1K
Back
Top