Find two open sets A and B, such that A is subset of B, A is not equal

  • Thread starter Thread starter math25
  • Start date Start date
  • Tags Tags
    Sets
math25
Messages
24
Reaction score
0
Find two open sets A and B, such that A is subset of B, A is not equal to B, and m(A)=m(B)

Can I use these two sets?

A=(0,2) B=(0,1) U (1,2)

thanks
 
Physics news on Phys.org


Almost. Your example has B a subset of A. You want the reverse.
 


you are right, thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top