MHB Find x for Geometric Progression: Solve with Step-by-Step Explanation

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Geometric Sequence
AI Thread Summary
To determine the value of x that makes the sequence x-1, 3x+4, 6x+8 a geometric progression, the condition b^2 = ac must be applied. This leads to the equation 3x^2 + 22x + 24 = 0. Solving this quadratic equation yields two potential solutions: x = -6 and x = -4/3. However, x = -4/3 is invalid as it results in a zero denominator. Therefore, the correct solution is x = -6.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Find the value of x such that the following sequence forms a geometric progression...?
x-1, 3x+4, 6x+8...so i am suppose to solve this by this rule: a,b,c then b^2=ac but I am just going around in circles because i have no idea how to get an answer, my textbook says the answer is -6, but i want to know the working out...any answers appreciated!
thanks in advance:)

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
The sequence $x-1, 3x+4, 6x+8$ forms a a geometric progression if and only if:
$$\frac{3x+4}{x-1}=\frac{6x+8}{3x+4}\text{ and } x-1\neq 0\text{ and }3x+4\neq 0$$
Solving the equation
$$3x^2+22x+24=0\Leftrightarrow\ldots \Leftrightarrow x=-6\text{ or }x=-4/3$$
But $x=-4/3$ is not a valid solution (satisfies $3x+4=0$), so the solution is $x=-6$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top