MHB Finding $a+b$ given $(3a+b)^2+6a-2b=1544$

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
$a,b\in N$

given:

$(3a+b)^2+6a -2b =1544$

find:

$a+b=?$
 
Mathematics news on Phys.org
Albert said:
$a,b\in N$

given:

$(3a+b)^2+6a -2b =1544$

find:

$a+b=?$

$(3a+b)^2 + 2(3a-b) = 1544$
add 4b+1 to both sides to get
$(3a+b)^2 + 2(3a+b) + 1 = 1545 + 4b$
or $(3a + b + 1)^2 = 1545 + 4b$

as 1545 mod 4 = 1 solution may exist
so we need to take odd squares above 1545

$(3a + b + 1) = 41 => 1545 + 4b = 1681 => b= 34$

this gives a = 2 or a + b = 36

$(3a + b + 1) = 43 => 1545 + 4b = 1849 => b= 76$ too large

so a+b = 36 is the only solution
 
kaliprasad said:
$(3a+b)^2 + 2(3a-b) = 1544$
add 4b+1 to both sides to get
$(3a+b)^2 + 2(3a+b) + 1 = 1545 + 4b$
or $(3a + b + 1)^2 = 1545 + 4b$

as 1545 mod 4 = 1 solution may exist
so we need to take odd squares above 1545

$(3a + b + 1) = 41 => 1545 + 4b = 1681 => b= 34$

this gives a = 2 or a + b = 36

$(3a + b + 1) = 43 => 1545 + 4b = 1849 => b= 76$ too large

so a+b = 36 is the only solution
nice solution (Yes)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top