MHB Finding a positive definite matrix to satisfy the general equation of an ellipse

kalish1
Messages
79
Reaction score
0
I am trying to find a matrix A such that $(1)$ can be written as $v^TAv=1$ where $v=(x, y)^T$.

$(1)$: $$\left(\frac{x}{a_1}\right)^2 + \left(\frac{y}{a_2}\right)^2 - 2\left(\frac{xy}{a_1a_2}\right)\cos(\delta)=\sin^2(\delta)$$ $$a_1, a_2, \sin(\delta)\neq 0.$$

I am positive that $\cos(\delta)$ should not be $\cos^2(\delta)$, as it is not even indicated in my textbook's errata.

**Here is my attempt:**

$v^TAv=1 \iff (x,y)A(x,y)^T=1 \iff A [=] 2 $x $2$ $$\iff 1 = (x \ y) \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \iff 1 = (x \ y) \begin{pmatrix} ax+by \\ cx+dy\end{pmatrix} \iff ax^2 + bxy + cxy + dy^2 = 1 \iff a\sin^2(\delta)x^2 + b\sin^2(\delta)xy + c\sin^2(\delta)xy + d\sin^2(\delta)y^2 = \sin^2(\delta)$$

So, $a\sin^2(\delta)=\frac{1}{{a_1}^2}, d\sin^2(\delta)=\frac{1}{{a_2}^2}, (b+c)\sin^2(\delta)=\frac{-2\cos(\delta)}{a_1a_2}$.

**Where I'm stuck:** Beyond this, I can't seem to separate $b$ and $c$! Is one of them just going to be a free variable?

Thanks.

By the way, I have cross-posted this question on Math Stack Exchange but did not get a satisfactory answer.

Moderator Edit: Link to the Thread at Stack Exchange: matrices - Finding a positive definite matrix to satisfy the general equation of an ellipse - Mathematics Stack Exchange
 
Last edited by a moderator:
Physics news on Phys.org
An first step to this is to divide through by sin(x) to get
sin^2(x) so that it actually is equal to 1.

write
\begin{pmatrix}x & y \end{pmatrix}\begin{pmatrix} a & b \\ c & d\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix}= \begin{pmatrix}ax+ cy & cx+ dy\end{pmatrix}\begin{pmatrix}x \\ y \end{pmatrix}= ax^2+ bxy+ cxy+ dy^2= ax^2+ (b+ c)xy+ dy^2 which we compare to \frac{1}{a_1^2sin^2(\delta)}x^2- \frac{2cos(\delta)}{a_1a_2sin^2(\delta)}xy+ \frac{1}{a_2^2sin^2(\delta)}y^2= 1.

So a= \frac{1}{a_1^2sin^2(\delta)}, b+ c= \frac{2cos(\delta)}{a_1a_2asin^2(\delta)}, and d= \frac{1}{a_2^2sin^2(\delta)}. That has a single equation for b and c so there can be many such matrices unless you have some other condition such the matrix being orthogonal- or positive definite!
 
Last edited by a moderator:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top