MHB Finding a third degree polynomial... stumped

  • Thread starter Thread starter lashia
  • Start date Start date
  • Tags Tags
    Degree Polynomial
lashia
Messages
3
Reaction score
0
Problem:

Find a third degree polynomial with rational coefficients if two of its zeros
are 6 and – 𝑖 and it passes through the point (2, -10)So far, I have came up with this:
(x-6)(x^2+1) however, instead of passing through (2,-10), it passes through (2,-20)

Anyone know how to come up with a third degree polynomial with 6,-i as its zeros, and passes through (2,-10)? It has given me a headache!

Thank you in advance.
 
Mathematics news on Phys.org
lashia said:
Problem:

Find a third degree polynomial with rational coefficients if two of its zeros
are 6 and – 𝑖 and it passes through the point (2, -10)So far, I have came up with this:
(x-6)(x^2+1) however, instead of passing through (2,-10), it passes through (2,-20)

Anyone know how to come up with a third degree polynomial with 6,-i as its zeros, and passes through (2,-10)? It has given me a headache!

Thank you in advance.

you have done right except a small modification that you need to yo do

$f(x) = A(x-6)(x^2+1)$ where A is a constant
putting the values you get A = 2

so $f(x) = 2(x-6)(x^2+1)$
 
Last edited:
Thank you so much.. what a relief!
 
kaliprasad said:
you have done right except a small modification that you need to yo do

$f(x) = A(x-6)(x^2+1)$ where A is a constant
putting the values you get A = 2

so $f(x) = 2(x-6)(x^2+1)$

It doesn't seem tp pass through (2,-10) :confused:
 
Hi lashia,

kaliprasad's value of $A$ should instead be $A = 1/2$. Check now to see that the polynomial passes through $(2,-10)$ with $A = 1/2$.
 
lashia said:
It doesn't seem tp pass through (2,-10) :confused:

Let's go back to:

$$f(x)=A(x-6)\left(x^2+1\right)$$

Now, we set:

$$f(2)=A(2-6)\left(2^2+1\right)=-20A=-10\implies A=\frac{1}{2}$$

And so we have:

$$f(x)=\frac{1}{2}(x-6)\left(x^2+1\right)$$ :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top