Finding a third degree polynomial... stumped

  • Context: MHB 
  • Thread starter Thread starter lashia
  • Start date Start date
  • Tags Tags
    Degree Polynomial
Click For Summary
SUMMARY

The discussion centers on finding a third degree polynomial with rational coefficients, specifically with zeros at 6 and -i, that passes through the point (2, -10). The initial attempt was to use the polynomial form \(f(x) = (x-6)(x^2+1)\), which incorrectly evaluated to -20 at x=2. The correct approach involves introducing a constant \(A\), leading to the polynomial \(f(x) = \frac{1}{2}(x-6)(x^2+1)\), which accurately passes through the desired point.

PREREQUISITES
  • Understanding of polynomial functions and their properties
  • Knowledge of complex numbers and their conjugates
  • Ability to manipulate algebraic expressions
  • Familiarity with evaluating functions at specific points
NEXT STEPS
  • Study polynomial interpolation techniques
  • Learn about the Fundamental Theorem of Algebra
  • Explore the concept of complex conjugate roots in polynomials
  • Investigate the role of leading coefficients in polynomial behavior
USEFUL FOR

Mathematics students, educators, and anyone interested in polynomial functions and their applications in algebra.

lashia
Messages
3
Reaction score
0
Problem:

Find a third degree polynomial with rational coefficients if two of its zeros
are 6 and – 𝑖 and it passes through the point (2, -10)So far, I have came up with this:
(x-6)(x^2+1) however, instead of passing through (2,-10), it passes through (2,-20)

Anyone know how to come up with a third degree polynomial with 6,-i as its zeros, and passes through (2,-10)? It has given me a headache!

Thank you in advance.
 
Mathematics news on Phys.org
lashia said:
Problem:

Find a third degree polynomial with rational coefficients if two of its zeros
are 6 and – 𝑖 and it passes through the point (2, -10)So far, I have came up with this:
(x-6)(x^2+1) however, instead of passing through (2,-10), it passes through (2,-20)

Anyone know how to come up with a third degree polynomial with 6,-i as its zeros, and passes through (2,-10)? It has given me a headache!

Thank you in advance.

you have done right except a small modification that you need to yo do

$f(x) = A(x-6)(x^2+1)$ where A is a constant
putting the values you get A = 2

so $f(x) = 2(x-6)(x^2+1)$
 
Last edited:
Thank you so much.. what a relief!
 
kaliprasad said:
you have done right except a small modification that you need to yo do

$f(x) = A(x-6)(x^2+1)$ where A is a constant
putting the values you get A = 2

so $f(x) = 2(x-6)(x^2+1)$

It doesn't seem tp pass through (2,-10) :confused:
 
Hi lashia,

kaliprasad's value of $A$ should instead be $A = 1/2$. Check now to see that the polynomial passes through $(2,-10)$ with $A = 1/2$.
 
lashia said:
It doesn't seem tp pass through (2,-10) :confused:

Let's go back to:

$$f(x)=A(x-6)\left(x^2+1\right)$$

Now, we set:

$$f(2)=A(2-6)\left(2^2+1\right)=-20A=-10\implies A=\frac{1}{2}$$

And so we have:

$$f(x)=\frac{1}{2}(x-6)\left(x^2+1\right)$$ :D
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K