MHB Finding a third degree polynomial... stumped

  • Thread starter Thread starter lashia
  • Start date Start date
  • Tags Tags
    Degree Polynomial
AI Thread Summary
To find a third-degree polynomial with rational coefficients that has zeros at 6 and -i, and passes through the point (2, -10), the initial attempt was to use the polynomial form (x-6)(x^2+1). However, this resulted in the polynomial passing through (2, -20) instead. The correct approach involves introducing a constant A, leading to the polynomial f(x) = A(x-6)(x^2+1). By solving for A using the point (2, -10), it is determined that A should be 1/2, resulting in the final polynomial f(x) = (1/2)(x-6)(x^2+1). This solution successfully meets the criteria of the problem.
lashia
Messages
3
Reaction score
0
Problem:

Find a third degree polynomial with rational coefficients if two of its zeros
are 6 and – 𝑖 and it passes through the point (2, -10)So far, I have came up with this:
(x-6)(x^2+1) however, instead of passing through (2,-10), it passes through (2,-20)

Anyone know how to come up with a third degree polynomial with 6,-i as its zeros, and passes through (2,-10)? It has given me a headache!

Thank you in advance.
 
Mathematics news on Phys.org
lashia said:
Problem:

Find a third degree polynomial with rational coefficients if two of its zeros
are 6 and – 𝑖 and it passes through the point (2, -10)So far, I have came up with this:
(x-6)(x^2+1) however, instead of passing through (2,-10), it passes through (2,-20)

Anyone know how to come up with a third degree polynomial with 6,-i as its zeros, and passes through (2,-10)? It has given me a headache!

Thank you in advance.

you have done right except a small modification that you need to yo do

$f(x) = A(x-6)(x^2+1)$ where A is a constant
putting the values you get A = 2

so $f(x) = 2(x-6)(x^2+1)$
 
Last edited:
Thank you so much.. what a relief!
 
kaliprasad said:
you have done right except a small modification that you need to yo do

$f(x) = A(x-6)(x^2+1)$ where A is a constant
putting the values you get A = 2

so $f(x) = 2(x-6)(x^2+1)$

It doesn't seem tp pass through (2,-10) :confused:
 
Hi lashia,

kaliprasad's value of $A$ should instead be $A = 1/2$. Check now to see that the polynomial passes through $(2,-10)$ with $A = 1/2$.
 
lashia said:
It doesn't seem tp pass through (2,-10) :confused:

Let's go back to:

$$f(x)=A(x-6)\left(x^2+1\right)$$

Now, we set:

$$f(2)=A(2-6)\left(2^2+1\right)=-20A=-10\implies A=\frac{1}{2}$$

And so we have:

$$f(x)=\frac{1}{2}(x-6)\left(x^2+1\right)$$ :D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top