MHB Finding a value that will make a function continuous

AI Thread Summary
For a function to be continuous at x=2, the values of the function must be equal from both sides at that point. The equation 5(2)-1 = a(2)^2+1 is used to find the value of 'a' that ensures this continuity. Solving this equation yields a = 2, which is the necessary value for continuity. The intuition behind this is that continuity requires the left-hand limit and right-hand limit to match the function's value at that point. Thus, determining 'a' ensures the function behaves consistently at x=2.
shle
Messages
4
Reaction score
0
Hi All, just a question regarding continuous functions.
From what I understand if x > 2, then any value of 'a' should make this function continuous? Any clarification would be very helpful!
Thanks in advance!
 

Attachments

  • 2b.jpg
    2b.jpg
    8.8 KB · Views: 74
Mathematics news on Phys.org
Try 5(2)-1 = a(2)^2+1 solve for a
 
Thank you, I get a = 2. Can you please explain to me the intuition behind that? Why is it that I have to use 5(2)-1 = a(2)^2+1 and solve for a?
 
For the function to be continuous at x=2, then they must be equal at that point.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top