Finding a vector given a tangent vector

Click For Summary
SUMMARY

The discussion focuses on finding a vector function r(t) that satisfies the condition r(0) = (e, 0) given the tangent vector T(t) = (-sin(t)e^(cos(t)), cos(t)). Participants clarify that T(t) must be a tangent vector to a family of curves, and the correct interpretation of T(t) is crucial for solving the problem. The solution involves integrating the components of T(t) to derive r(t), ensuring that each component is treated as a vector and includes a constant of integration.

PREREQUISITES
  • Understanding of vector calculus and tangent vectors
  • Familiarity with integration of vector functions
  • Knowledge of exponential functions and their properties
  • Proficiency in using Wolfram Mathematica for mathematical expressions
NEXT STEPS
  • Study the integration of vector functions in calculus
  • Learn about the properties of tangent vectors in vector calculus
  • Explore the use of Wolfram Mathematica for solving calculus problems
  • Investigate the relationship between curves and their tangent vectors
USEFUL FOR

Students and educators in mathematics, particularly those studying vector calculus, as well as anyone seeking to understand the relationship between tangent vectors and vector functions.

tsamocki
Messages
20
Reaction score
0

Homework Statement



Find a tangent vector r that satisfies r(0)= (e^(1),0) given T(t) = (-e^(cos(t)sin(t)),cos(t)), where t is an element of [0,2π]

Homework Equations



Tangent vector T = r'(t)/(norm(r'(t))

The Attempt at a Solution



I was thinking that r(t) = ∫r'(t), and that the norm of r(t) = 1; but i am having a hard time identifying a function compatible with the tangent vector that also has a norm of 1. I also attempted to find a value for t that would force the exponential aspect of -e (cos(t)sin(t)) to equal 1, while also allowing cos(t) = 0, but this did not work. Now I'm stuck second guessing myself.

Homework Statement

 
Physics news on Phys.org
tsamocki said:

Homework Statement



Find a tangent vector r that satisfies r(0)= (e^(1),0) given T(t) = (-e^(cos(t)sin(t)),cos(t)), where t is an element of [0,2π]

This question doesn't make any sense to me. Your T isn't a unit vector in the first place.
 
Sorry, maybe I've omitted something important: for each (t), the function T provides a tangent vector to an assortment of curves. The curve r exists in this assortment; find r that satisfies r(0) = (e^1, 0).
 
tsamocki said:
Sorry, maybe I've omitted something important: for each (t), the function T provides a tangent vector to an assortment of curves. The curve r exists in this assortment; find r that satisfies r(0) = (e^1, 0).

Are you trying to find a vector function r(t) satisfying r(0) =<e,0> and such that r'(t) = T(t)? Is that it? And if so, are you sure the first component of T isn't suppsed to be -\sin(t)e^{\cos t} instead of what you have written?
 
LCKurtz said:
Are you trying to find a vector function r(t) satisfying r(0) =<e,0> and such that r'(t) = T(t)? Is that it? And if so, are you sure the first component of T isn't suppsed to be -\sin(t)e^{\cos t} instead of what you have written?

Yes i am!

It is given in wolfram mathematica form T(t) = (-exp(cos(t))sin(t), cos(t)); so now that you think about it, i could see it being T(t) = -sin(t)e^(cos(t)), cos(t).

I apologize for my errors.:blushing:
 
tsamocki said:
Yes i am!

It is given in wolfram mathematica form T(t) = (-exp(cos(t))sin(t), cos(t)); so now that you think about it, i could see it being T(t) = -sin(t)e^(cos(t)), cos(t).

I apologize for my errors.:blushing:

And now that the problem is stated clearly, you see how to solve it, right?
 
LCKurtz said:
And now that the problem is stated clearly, you see how to solve it, right?

Would i need to integrate it in order to get a function of 0, r(0) = (e,0)?

rdr = e^(cos(t))+constant, ∫rdr = sin(t)+constant; if t=0, the function turns into the desired form.

Is this on the right track?
 
tsamocki said:
Would i need to integrate it in order to get a function of 0, r(0) = (e,0)?

rdr = e^(cos(t))+constant, ∫rdr = sin(t)+constant; if t=0, the function turns into the desired form.

Is this on the right track?

Don't forget you are integrating a vector -- both components and each component gets its own constant. And your answer for r will be a vector. But, yes, it is that easy.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 85 ·
3
Replies
85
Views
10K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K