Finding an Orthogonal Polynomial to x^2-1/2 on L2[0,1]

mandygirl22
Messages
4
Reaction score
0
Find a polynomial that is orthogonal to f(x)=x2-1/2 using L2[0,1].

I have looked all in the textbook and all over the internet and have found some hints if the interval is [-1,1], but still do not even know where to start here. I think I was gone the day our professor taught this because I do not know anything about it and the book does not make any sense out of it. Thanks for your help!
 
Physics news on Phys.org
Well, just DO it! The simplest kind of polynomial is linear. Integrate Ax+ B times [math]x^2- 1/2[/math] from 0 to 1 and choose A and B so the integral is 0.
 
*hits forehead* I knew there had to be some simple way of doing it that I was ignoring! Thanks!

(and the REALLY HARD solution ended up being f(x)=x) :smile:
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top