Finding $\angle PCA$ in Triangle ABC with $\angle ANB = 90^\circ$

  • Context: MHB 
  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Angle Triangle
Click For Summary
SUMMARY

The discussion focuses on finding the angle $\angle PCA$ in triangle ABC, where point $N$ lies on segment $BC$ and point $P$ lies on segment $AN$. Given angles include $\angle ANB = 90^\circ$, $\angle PBA = 20^\circ$, $\angle PBC = 40^\circ$, and $\angle PCB = 30^\circ$. Through a series of calculations, it is established that $\angle BPA = 130^\circ$, $\angle PAB = 30^\circ$, and $\angle APC = 120^\circ$, leading to the conclusion that $\angle PAC = 60^\circ$.

PREREQUISITES
  • Understanding of triangle properties and angle relationships
  • Familiarity with Pythagorean theorem
  • Knowledge of trigonometric identities
  • Ability to construct geometric diagrams
NEXT STEPS
  • Explore advanced triangle geometry concepts
  • Study properties of orthocenters in triangles
  • Learn about angle chasing techniques in geometry
  • Investigate the use of trigonometric identities in geometric proofs
USEFUL FOR

Students and educators in geometry, mathematicians focusing on triangle properties, and anyone interested in solving geometric angle problems.

maxkor
Messages
79
Reaction score
0
In triangle ABC point $N \in BC$ , point $P \in AN$. Let
$\angle ANB = 90$°
$\angle PBA = 20$°
$\angle PBC = 40$°
$\angle PCB = 30$°.
Find $\angle PCA$.
I don't know how to solve that. Maby it was.
 
Mathematics news on Phys.org
Let's begin by constructing a diagram:

\begin{tikzpicture}[blue]
\coordinate (A) at (0,0);
\coordinate (B) at (2,5);
\coordinate (C) at (8,0);
\coordinate (N) at (3.28,3.93);
\coordinate (P) at (2,2.4);
\draw[blue, ultra thick] (A) -- (B) -- (C) -- cycle;
\draw[blue, ultra thick] (A) -- (N);
\draw[blue, ultra thick] (B) -- (P);
\draw[blue, ultra thick] (P) -- (C);
\path (A) node[below left] {A} -- (B) node[above] {B} -- (C) node[below right] {C} -- (N) node[above right] {N} -- (P) node[below=5pt] {P} -- (C) node[above=5pt, left=25pt] {$\alpha$} -- (N) node[left=5pt] {$\theta_1$} -- (B) node[below=30pt,left=-2pt] {$\theta_2$} -- (B) node[below=12pt,right=-2pt] {$\theta_3$} -- (C) node[above=20pt, left=25pt] {$\theta_4$};
\end{tikzpicture}

where:

$$\theta_1=90^{\circ},\,\theta_2=20^{\circ},\,\theta_3=40^{\circ},\,\theta_4=30^{\circ}$$

Can you find $\angle\text{NPB}$?
 
$\angle NPB=50^o$ what next?
 
maxkor said:
$\angle NPB=50^o$ what next?

Then what must $\angle\text{BPA}$ be?
 
$30^o$ and?
 
maxkor said:
$30^o$ and?

We should have:

$$\angle\text{BPA}+50^{\circ}=180^{\circ}$$

Hence:

$$\angle\text{BPA}=130^{\circ}$$

Do you see any other angles you can fill in?
 
Okay, we now have:

\begin{tikzpicture}[blue]
\coordinate (A) at (0,0);
\coordinate (B) at (2,5);
\coordinate (C) at (8,0);
\coordinate (N) at (3.28,3.93);
\coordinate (P) at (2,2.4);
\draw[blue, ultra thick] (A) -- (B) -- (C) -- cycle;
\draw[blue, ultra thick] (A) -- (N);
\draw[blue, ultra thick] (B) -- (P);
\draw[blue, ultra thick] (P) -- (C);
\path (A) node[below left] {A} -- (B) node[above] {B} -- (C) node[below right] {C} -- (N) node[above right] {N} -- (P) node[below=5pt] {P} -- (C) node[above=5pt, left=25pt] {$\alpha$} -- (N) node[left=5pt] {$\theta_1$} -- (B) node[below=30pt,left=-2pt] {$\theta_2$} -- (B) node[below=12pt,right=-2pt] {$\theta_3$} -- (C) node[above=20pt, left=25pt] {$\theta_4$} -- (P) node[above=22pt, right=0pt] {$\theta_5$} -- (P) node[above=5pt, left=0pt] {$\theta_6$};
\end{tikzpicture}

where:

$$\theta_5=50^{\circ},\,\theta_6=130^{\circ}$$

What else can we fill in?
 
$\angle PAB=30^o,\angle APC=120^o, \angle NCP =120^o$ and?
 
maxkor said:
$\angle PAB=30^o,\angle APC=120^o, \angle NCP =120^o$ and?

What I find is:

$$\angle\text{PAB}=30^{\circ},\,\angle\text{NPC}=60^{\circ},\,\angle\text{APC}=120^{\circ}$$

We have two angles left to find...can you identify them?
 
  • #10
For example, I don't know how to find $\angle PAC$
 
  • #11
maxkor said:
For example, I don't know how to find $\angle PAC$

Let's let:

$$\angle\text{PAC}=\beta$$

So, we may state:

$$\alpha+\beta+120^{\circ}=180^{\circ}$$

or:

$$\alpha+\beta=60^{\circ}$$

Now, consider the right triangle $\triangle\text{ANC}$. Let:

$$x=\overline{NC}$$

$$y=\overline{AN}$$

$$z=\overline{AC}$$

By Pythagoras, we have:

$$x^2+y^2=z^2$$

Can you express the area of the right triangle in 3 different ways, so that we have 5 equations in 5 unknowns?
 
  • #12
Yes but when I use
$S=0.5xy$
$S=0.5xz\sin(60-\alpha)$
$S=0.5zysin(\alpha+30)$

$sin^2(60-\alpha)+sin^2(\alpha+30)=1$ it is identity
 
  • #13
maxkor said:
Yes but when I use
$S=0.5xy$
$S=0.5xz\sin(60-\alpha)$
$S=0.5zysin(\alpha+30)$

$sin^2(60-\alpha)+sin^2(\alpha+30)=1$ it is identity

Yes, I keep going in circles with identities...I suppose another approach is needed. :D
 
  • #14
Using values as given by Mark's diagram, notice that $P$ is the orthocenter of $\triangle{ABC}$, so $\alpha=90^\circ-\theta_3-\theta_4=20^\circ$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
14
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K