Finding area and volume of bounded region via integration

Click For Summary
The discussion focuses on calculating the area and volume of a region bounded by the curves y = x - 3, y = 5 - x, and y = 3 using integration. The area is computed using the integral expression ∫_2^4 (3 - (5 - x)) dx + ∫_4^6 (3 - (x - 3)) dx, yielding an area of 6 square units. For volume, two integral expressions are set up for rotation about different axes, resulting in volumes of approximately 15 cubic units and 42 cubic units, respectively. The participants emphasize the importance of correctly identifying intersection points and bounds for accurate integration. Overall, the thread provides detailed steps for setting up and evaluating integrals to find area and volume.
Sociomath
Messages
9
Reaction score
0
Hi,

I just need these solutions checked.
Thank you in advance!

Consider the region bounded by the following curves ##y=x-3, y=5-x, \text{and}\ y=3##:

1.) set up an integral expression that would give the area of the region of y as a function of x:

##y = x-3 = 5-x##
##x + x - 3 - 5 = 0##
##2x-8=0##
##x = 4##
##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##

2.) set up an integral expression that would give the area of the region of x as a function of y:

##\displaystyle \int_0^5 |\left(5-y\right)|##

3.) compute the area of the region by evaluating one of the expressions in (1.) or (2.):

##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##
##\left(x-8\right)+\ \text{C}##
##\displaystyle = \lim_{x \to 0^{+}} ((x-8)x)=0##
##\displaystyle = \lim_{x \to 3^{-}} ((x-8)x)=-15##
##\displaystyle |-15-0| = 15##


4.) set up an integral expression that would give the volume of the solid created by rotating the region about y = 1, using the disk/washer method:

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##


5.) find the volume of the solid by evaluating the integral/integrals in (4.):

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{29}{6}\pi##
##\approx 15\ \text{cubic units}##

6.) set up an integral expression that would give the volume of the solid created by rotating the region about y = -2, using the disk/washer method:

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##


7.) compute the volume of the solid by evaluating the integral or integrals in (6.):

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{27}{2}\pi##
##\approx 42\ \text{cubic units}##
 
Physics news on Phys.org
Sociomath said:
Hi,

I just need these solutions checked.
Thank you in advance!

Consider the region bounded by the following curves ##y=x-3, y=5-x, \text{and}\ y=3##:

1.) set up an integral expression that would give the area of the region of y as a function of x:

##y = x-3 = 5-x##
##x + x - 3 - 5 = 0##
##2x-8=0##
##x = 4##
##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##

2.) set up an integral expression that would give the area of the region of x as a function of y:

##\displaystyle \int_0^5 |\left(5-y\right)|##

3.) compute the area of the region by evaluating one of the expressions in (1.) or (2.):

##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##
##\left(x-8\right)+\ \text{C}##
##\displaystyle = \lim_{x \to 0^{+}} ((x-8)x)=0##
##\displaystyle = \lim_{x \to 3^{-}} ((x-8)x)=-15##
##\displaystyle |-15-0| = 15##4.) set up an integral expression that would give the volume of the solid created by rotating the region about y = 1, using the disk/washer method:

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##5.) find the volume of the solid by evaluating the integral/integrals in (4.):

##\displaystyle \pi \int_0^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{29}{6}\pi##
##\approx 15\ \text{cubic units}##

6.) set up an integral expression that would give the volume of the solid created by rotating the region about y = -2, using the disk/washer method:

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##7.) compute the volume of the solid by evaluating the integral or integrals in (6.):

##\displaystyle \pi \int_{-2}^1 \left(5-x\right)^2-\left(x-3)^2\right)\ dx##
##=\ -\dfrac{27}{2}\pi##
##\approx 42\ \text{cubic units}##

I would suggest you start over and begin by drawing a picture of the region. You are going to need two integrals using either a dx or dy variable. Also, what bounds the region on the left?
 
Sociomath said:
Hi,

Consider the region bounded by the following curves ##y=x-3, y=5-x, \text{and}\ y=3##:

1.) set up an integral expression that would give the area of the region of y as a function of x:

##y = x-3 = 5-x##
##x + x - 3 - 5 = 0##
##2x-8=0##
##x = 4##
##\displaystyle \int_0^3 |\left(2x-8\right)|\ dx##

You were correct in identifying x=4 as an intersection point, and y = 1 there; but the other two intersection points must occur where y = 3, so x is certainly NOT zero or 3 ! So there is no reason to integrate from 0 to 3 with respect to x.
 
  • Like
Likes Sociomath
Thanks LCKurtz and az_lender!

1. ##\displaystyle \int_2^4 \left(3-\left(5-x\right)\right)dx\,+\,\displaystyle \int_4^6\left(\left(3-\left(x-3\right)\right)\right)dx##
::
::

2. ##\displaystyle \int_1^3 ((y+3-(5-y))dy\,=\,\int_1^3 (2y-2))dy##
::
::

3. Using (1.) from above:
##\displaystyle \int_2^4 \left(3-\left(5-x\right)\right)dx\,+\,\displaystyle \int_4^6\left(\left(3-\left(x-3\right)\right)\right)dx##
##=\,\dfrac{x^2}{2}\,+\,C##
##\displaystyle\lim_{x\to 2^{+}} \left(\dfrac{x^2}{2}\right)\,=\,2##
##\displaystyle\lim_{x\to 4^{-}} \left(\dfrac{x^2}{2}\right)\,=\,8##

##\text{From the above}\,=\,8-2\,=\,6##
::
::

4. ##\displaystyle \int_2^4 \pi ((2)^2-((3-(5-x)))^2 dx\,+\,\int_4^6 \pi ((2)^2\,-\,(3-(x-3)))^2 dx##
::
::

5. From (4.) above:
##\dfrac{16\left(1-3\pi\right)\pi}{3}##
::
::

6. ##\displaystyle \int_1^3 \pi \left(6-\left(5-y\right)\right)^2\,-\,\left(6\,-\,\left(y\,+\,3\right)\right)^2dy\
\left(6-\left(5-y\right)\right)^2\,-\,\displaystyle \int \left(6\,-\,\left(y\,+\,3\right)\right)^2dy\
\,=\,4\left(y\,-\,2\right)y\,+\,\dfrac{28}{3}\,+\,C##
::
::

7. From (6.) above:
##\displaystyle\lim_{y\to 1^{+}} (4(y-2))y\,+\,\dfrac{28}{3})\,=\,\dfrac{16\pi}{3}##
##\displaystyle\lim_{y\to 3^{-}} (4(y-2))y\,+\,\dfrac{28}{3})\,=\,\dfrac{64\pi}{3}##

##=\,\dfrac{64\pi}{3}\,-\,\dfrac{16\pi}{3}\,=\,16\pi##
 
Last edited:
Sociomath said:
1. ##\displaystyle \int_2^4 \left(3-\left(5-x\right)\right)dx\,+\,\displaystyle \int_4^6\left(\left(3-\left(x-3\right)\right)\right)dx##

2. $$ \int_1^3 (y+3)-(5-y)dy$$

Those look correct for the triangular area.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
12
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 20 ·
Replies
20
Views
2K
Replies
2
Views
1K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K