- #1

- 1,861

- 1

I am expanding the function [tex]f(t) = e^{i \omega t}[/tex] from (-π,π) as a complex Fourier series where w is not an integer. I am stuck figuring out how the series expands with n.

[tex] c_n = \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i \omega t} e^{-int} dt [/tex]

Join exponentials

[tex] c_n = \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i t(\omega - n) [/tex]

Then integrate the function and evaluate the limits

[tex] c_n = \frac{1}{2 \pi} \frac{1}{i(\omega - n)} \frac{dw}{dt} (e^{i \pi (\omega - n)} - e^{ -i \pi(\omega - n)}) [/tex]

Use the identity for sinx

[tex] c_n = \frac{1}{\pi} \frac{1}{(\omega - n)} \frac{dw}{dt} sin(\pi \omega - \pi n)[/tex]

This is the point when I am not quite sure if I am done, or I need to do something more. Should I just put this into back into the expression for the complex Fourier series?

[tex] f(x) = \sum_{n=-\infty}^{n=+\infty} c_n e^{int}[/tex]

[tex] c_n = \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i \omega t} e^{-int} dt [/tex]

Join exponentials

[tex] c_n = \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i t(\omega - n) [/tex]

Then integrate the function and evaluate the limits

[tex] c_n = \frac{1}{2 \pi} \frac{1}{i(\omega - n)} \frac{dw}{dt} (e^{i \pi (\omega - n)} - e^{ -i \pi(\omega - n)}) [/tex]

Use the identity for sinx

[tex] c_n = \frac{1}{\pi} \frac{1}{(\omega - n)} \frac{dw}{dt} sin(\pi \omega - \pi n)[/tex]

This is the point when I am not quite sure if I am done, or I need to do something more. Should I just put this into back into the expression for the complex Fourier series?

[tex] f(x) = \sum_{n=-\infty}^{n=+\infty} c_n e^{int}[/tex]

Last edited: