MHB Finding element of inverse matrix

Yankel
Messages
390
Reaction score
0
Hello all,

I have this matrix A

\[A=\begin{pmatrix} 1 &2 &3 &4 \\ 9 &8 &2 &0 \\ 17 &2 &0 &0 \\ 1 &0 &0 &0 \end{pmatrix}\]

B is defined as the inverse of A. I need to find the element in the first row and fourth column of B, without using determinants, so without using adjoint.

How should I do it then ?

Thanks !
 
Physics news on Phys.org
We know that the dot-product of the first 3 rows of $A$ with the fourth column of $B$ is 0, and the dot product of the fourth row of $A$ with the fourth column of $B$ is 1.

let's call this column vector $(b_1,b_2,b_3,b_4)$. We need to find $b_1$. From the last sentence of my previous paragraph, we know that:

$1b_1 + 0b_2 + 0b_3 + 0b_4 = 1$.

Your conclusion?
 
I didn't see this. Nice one, thanks !
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Back
Top