- #1

- 21

- 0

## Homework Statement

Evaluate [tex]\int[/tex][tex]\int[/tex] [tex]\sqrt{1+x^2+y^2}[/tex] where S is the helicoid: r(u,v) = u cos(v)i + u sin(v)j+vk , with 0[tex]\leq[/tex]u[tex]\leq[/tex]1, 0[tex]\leq[/tex]v[tex]\leq[/tex][tex]\theta[/tex].

The S is the area that we are trying to find. the area of the integral i guess.

## Homework Equations

I know i have to use the [tex]\varphi[/tex] ([tex]\theta[/tex],[tex]\phi[/tex]) = (acos[tex]\theta[/tex] sin [tex]\phi[/tex], asin[tex]\theta[/tex] sin [tex]\phi[/tex], acos[tex]\phi[/tex])

## The Attempt at a Solution

we did examples like this in class but i'm not sure where to start off. do i need to change the equation of the integral into sin and cos?