MHB Finding $k$ for 2 Non-Negative Roots of $x^2-2x\lfloor x \rfloor +x-k=0$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Roots
Click For Summary
The equation $x^2-2x\lfloor x \rfloor +x-k=0$ requires specific values of $k$ to yield two distinct non-negative roots. The analysis involves examining the behavior of the floor function $\lfloor x \rfloor$, which affects the quadratic's discriminant and root conditions. For the roots to be non-negative and distinct, the discriminant must be positive, and the roots must lie within the non-negative range. Various values of $k$ are explored, leading to a derived condition that must be satisfied. The discussion emphasizes the importance of understanding the interplay between the quadratic's coefficients and the floor function in determining the roots.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all values of $k$ for which the equation $x^2-2x\lfloor x \rfloor +x-k=0$ has two distinct non-negative roots.
 
Mathematics news on Phys.org
Note that for any real number $x$ we always have

$\lfloor x \rfloor \le x < \lfloor x \rfloor +1$

Then putting $\lfloor x \rfloor =y$ and $x-\lfloor x \rfloor=z$ we have

$z^2+z-y^2+y-k=0$, where $y$ is an integer and $z\in [0,\,1)$.

Expressing $z$ in terms of $y$ yields

$z=\dfrac{-1\pm\sqrt{1+4(y^2-y+k}}{2}$.

Since $z\ge 0$, we have

$z=\dfrac{-1+\sqrt{1+4(y^2-y+k)}}{2}$

So $0\le \dfrac{-1+\sqrt{1+4(y^2-y+k)}}{2}<1$, or equivalently,

$0\le y^2-y+k<2$

If $x_1>x_2$ are two distinct non-negative roots of the given equation, then $y_1>y_2$. Indeed, since $\lfloor x_i \rfloor=y_i$ and $x_i-\lfloor x_i \rfloor =z_i$ $(i=1,\,2)$, we have $y_1\ge y_2$. Assume that $y_1=y_2$. In this case, by $z=\dfrac{-1+\sqrt{1+4(y^2-y+k}}{2}$, $z_1=z_2$ and so $x_1=x_2$. This is impossible.

Thus $y_1>y_2$. From $0\le y^2-y+k<2$, it follows that

$|y_1^2-y_1-y_2^2+y_2|<2$, or equivalently,

$(y_1-y_2)|y_1+y_2-1|<2$.

Note that $y_1,\,y_2$ are integers, and so $y_1-y_2\ge 1$. Then the last inequality shows that $|y_1+y_2-1|=0,\,1$.

For $|y_1+y_2-1|=0$: $y_1+y_2=1$ and hence $y_1=1,\,y_2=0$.
For $|y_1+y_2-1|=1$: $y_1+y_2=2$ and hence $y_1=2,\,y_2=0$. But these values do not satisfy $(y_1-y_2)|y_1+y_2-1|<2$.

Thus we see that if the given equation has two non-negative distinct roots $x_1>x_2$, then $\lfloor x_1 \rfloor=1,\,\lfloor x_2 \rfloor=0$. Hence,

$x_1=\dfrac{\sqrt{1+4k}+1}{2},\\x_2=\dfrac{\sqrt{1+4k}-1}{2}$

Obviously, this equation cannot have more than two distinct roots.

Finally, it follows that the possible range of $k$ is $0\le k <2$.
 
Nice!

-Dan