MHB Finding last digits of 983389^389

  • Thread starter Thread starter Alexthexela
  • Start date Start date
Alexthexela
Messages
1
Reaction score
0
Posted is a discrete mathematics problem. I'm having trouble with step 2, where I'm instructed to "reduce the base." Does this refer to the logarithmic base? I'm looking through my textbook and at help articles online, but still finding myself confused. I'm new to this type of problem and seeking advice on this spot in particular, but any guidance you can provide would be much appreciated. Thank you all.View attachment 8063
 

Attachments

  • imagejpg.jpg
    imagejpg.jpg
    38.4 KB · Views: 107
Mathematics news on Phys.org
Alexthexela said:
Posted is a discrete mathematics problem. I'm having trouble with step 2, where I'm instructed to "reduce the base." Does this refer to the logarithmic base? I'm looking through my textbook and at help articles online, but still finding myself confused. I'm new to this type of problem and seeking advice on this spot in particular, but any guidance you can provide would be much appreciated. Thank you all.
Hi Alexthexela, and welcome to MHB!

In the number $983,389^{389}$, the base is $983,389$ and the exponent is $389$. The problem tells you to "think (mod 1000)". To do that, the first step is to "reduce the base" (mod 1000), in other words to replace $983,389$ by $389$. The reason for doing that is that the last three digits of $389^{389}$ will be the same as the last three digits of $983,389^{389}$. That is all there is to step 2 of the problem, and you can then move on to step 3.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top