MHB Finding Max n in $4^{27}+4^{500}+4^\text{n}=\text {k}^2$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Max
AI Thread Summary
The equation $4^{27}+4^{500}+4^n=k^2$ requires that $n$ be a large positive integer, specifically at least 250. By rewriting the equation, it becomes evident that $4^{27}(4^{473} + 4^{m} + 1)$ must also be a perfect square. A solution is found with $m=237$, leading to $n=264$, and a larger solution is identified with $m=945$, resulting in $n=972$. Further analysis shows that $n=972$ is the maximum possible solution, as any larger value leads to contradictions regarding the nature of perfect squares.
Albert1
Messages
1,221
Reaction score
0
$ 4^{27}+4^{500}+4^\text{n}=\text {k}^2 $

where n and k are positive integers ,please find max(n)
 
Mathematics news on Phys.org
Albert said:
$ 4^{27}+4^{500}+4^n=k^2 $

where n and k are positive integers ,please find max(n)
First, notice that $n$ must be quite large. The reason for that is that $4^{500} = \bigl(2^{500}\bigr)^2$ is a square. The next square after that is $\bigl(2^{500}+1\bigr)^2 = 4^{500} + 2^{501} + 1$. So we must have $4^{27}+4^n > 2^{501} > 4^{250}$, and it follows that $n$ must be at least $250$.

In particular, $n$ is certainly greater than 27. So let $m = n-27$. Then $ 4^{27}+4^{500}+4^n= 4^{27}\bigl(4^{473} + 4^m + 1\bigr)$. Since $4^{27} = \bigl(2^{27}\bigr)^2$ is a square, we want $4^{473} + 4^m + 1$ to be a square. You can find one solution to this by noticing that $\bigl(2\cdot 4^{236} + 1\bigr)^2 = 4^{473} + 4^{237} + 1$. Thus $m=237$ is a solution. The corresponding value for $n$ is $n=237+27 = 264$.

Pushing that idea a bit further, we have another solution: $\bigl(2\cdot 4^{472} + 1\bigr)^2 = 4^{945} + 4^{473} + 1$. That gives a bigger solution, $m=945$, corresponding to $\boxed{n= 972}$.

Now we want to show that $n=972$, or $m=945$, is the greatest possible solution. The reason for that is that if $x>945$ then $4^x + 4^{473}+1 > 4^x = \bigl(2^x\bigr)^2$. If $4^x + 4^{473}+1$ is a square, then it must be at least as big as $\bigl(2^x+1\bigr)^2$. But $\bigl(2^x+1\bigr)^2 = 4^x + 2^{x+1} + 1$. Therefore $4^{473} \geqslant 2^{x+1} > 2^{946} = 4^{473}$, which is a contradiction.
 
Opalg :well done (Yes)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top