MHB Finding Max n in $4^{27}+4^{500}+4^\text{n}=\text {k}^2$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Max
Click For Summary
The equation $4^{27}+4^{500}+4^n=k^2$ requires that $n$ be a large positive integer, specifically at least 250. By rewriting the equation, it becomes evident that $4^{27}(4^{473} + 4^{m} + 1)$ must also be a perfect square. A solution is found with $m=237$, leading to $n=264$, and a larger solution is identified with $m=945$, resulting in $n=972$. Further analysis shows that $n=972$ is the maximum possible solution, as any larger value leads to contradictions regarding the nature of perfect squares.
Albert1
Messages
1,221
Reaction score
0
$ 4^{27}+4^{500}+4^\text{n}=\text {k}^2 $

where n and k are positive integers ,please find max(n)
 
Mathematics news on Phys.org
Albert said:
$ 4^{27}+4^{500}+4^n=k^2 $

where n and k are positive integers ,please find max(n)
First, notice that $n$ must be quite large. The reason for that is that $4^{500} = \bigl(2^{500}\bigr)^2$ is a square. The next square after that is $\bigl(2^{500}+1\bigr)^2 = 4^{500} + 2^{501} + 1$. So we must have $4^{27}+4^n > 2^{501} > 4^{250}$, and it follows that $n$ must be at least $250$.

In particular, $n$ is certainly greater than 27. So let $m = n-27$. Then $ 4^{27}+4^{500}+4^n= 4^{27}\bigl(4^{473} + 4^m + 1\bigr)$. Since $4^{27} = \bigl(2^{27}\bigr)^2$ is a square, we want $4^{473} + 4^m + 1$ to be a square. You can find one solution to this by noticing that $\bigl(2\cdot 4^{236} + 1\bigr)^2 = 4^{473} + 4^{237} + 1$. Thus $m=237$ is a solution. The corresponding value for $n$ is $n=237+27 = 264$.

Pushing that idea a bit further, we have another solution: $\bigl(2\cdot 4^{472} + 1\bigr)^2 = 4^{945} + 4^{473} + 1$. That gives a bigger solution, $m=945$, corresponding to $\boxed{n= 972}$.

Now we want to show that $n=972$, or $m=945$, is the greatest possible solution. The reason for that is that if $x>945$ then $4^x + 4^{473}+1 > 4^x = \bigl(2^x\bigr)^2$. If $4^x + 4^{473}+1$ is a square, then it must be at least as big as $\bigl(2^x+1\bigr)^2$. But $\bigl(2^x+1\bigr)^2 = 4^x + 2^{x+1} + 1$. Therefore $4^{473} \geqslant 2^{x+1} > 2^{946} = 4^{473}$, which is a contradiction.
 
Opalg :well done (Yes)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
738
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K