roam
- 1,265
- 12
Homework Statement
The following matrix is an elements of the group GL2(2), that is, the general linear group of 2x2 matrices in \mathbb{Z}_2:
A = \begin{pmatrix}1 & 1 \\1 & 0\end{pmatrix}
Find the order of the element A.
The Attempt at a Solution
I know that the order of A is 3. Because A3=I, where "I" is the identity. I found this by trial and error:
A^1 = \begin{pmatrix}1 & 1 \\1 & 0\end{pmatrix}^1 \neq \begin{pmatrix}1 & 0 \\0 & 1\end{pmatrix}
A^2 = \begin{pmatrix}1 & 1 \\1 & 0\end{pmatrix} \begin{pmatrix}1 & 1 \\1 & 0\end{pmatrix} \neq \begin{pmatrix}1 & 0 \\0 & 1\end{pmatrix}
A^3 = \begin{pmatrix}1 & 1 \\1 & 0\end{pmatrix} \begin{pmatrix}1 & 1 \\1 & 0\end{pmatrix} \begin{pmatrix}1 & 1 \\1 & 0\end{pmatrix} = \begin{pmatrix}1 & 0 \\0 & 1\end{pmatrix}.
Here is my question, is there a shorthand method for finding "n" in:
\begin{pmatrix}1 & 1 \\1 & 0\end{pmatrix}^n = \begin{pmatrix}1 & 0 \\0 & 1\end{pmatrix}
Is there any way of solving for n without going through all the suffering matrix multipications above?