First of all, your equations are not correct.
Secondly, point (100,290) does not lie on your circle since all points on the circle must be a distance of 150 units from (150,150).
Find the distance c from (100,290) to (150,150) by:
c = \sqrt{(100 - 150)^2 + (290 - 150)^2} \approx 148.66Here is what you need to do:
Start with a point that is on the circle, say (100, 150+100\sqrt{2}) \approx(100, 291.421)[/tex]<br />
<br />
Find the horizontal distance between the center of the circle (a,b) and the first point on the circle (x1,y1). This is x1-a.<br />
<br />
Do the same for the vertical distance: y1-b<br />
<br />
Call the point at (a,b) point O,<br />
Call the point at (x1,y1), point F<br />
Call the point at (x2,y2), point G<br />
<br />
Call the point on the circle at (a+r,b) point H<br />
<br />
To find the angle \angle FOH[/tex] (call this \alpha[/tex]), use&lt;br /&gt;
&lt;br /&gt;
\alpha = \tan ^ {-1} \left( \frac {y1 - b}{x1 - a} \right)&lt;br /&gt;
&lt;br /&gt;
Now, you need to find a point \theta[/tex] degrees away from point F&amp;lt;br /&amp;gt;
&amp;lt;br /&amp;gt;
\theta = \frac{d}{r}There are 2 such points J &amp;amp;amp; K.&amp;lt;br /&amp;gt;
J lies on the circle an arc length of d units away from point F in the counter-clockwise direction&amp;lt;br /&amp;gt;
K lies in on the circle an arc length of d units away in the clockwise direction.&amp;lt;br /&amp;gt;
&amp;lt;br /&amp;gt;
Using \angle JOH[/tex] (call this angle \beta[/tex]) which is equal to \alpha + \theta[/tex], find the horizontal and vertical distances from point O to point J.&amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;gt;
Do this by using r \cdot \cos \beta[/tex] and r \cdot \sin \beta[/tex], respectively.&amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;gt;
Offset these distances by the coordinates of O to get the coordinates of G; (x2, y2)&amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;gt;
x2 = a + r \cdot \cos \beta[/tex]&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt;
y2 = b + r \cdot \sin \beta[/tex]&amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;gt;
To verify that this point lies on the circle, it must be r units away from point O, so find:&amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;gt;
r = \sqrt {(x2 - a)^2 + (y2 - b)^2}To find point K, use \beta = \alpha - \theta[/tex] and follow the same process.&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
(Note: keep all of your angles in radians)&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
Therefore with circle O having center (150,150) and radius 150,&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
Given point (100, 150+100\sqrt{2})[/tex] and arc length d = 103&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
You should come up with points J &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp; K having the following &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;approximate&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; coordinates:&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
Point J: (125.648, 298.010)&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
Point K: (290.357, 202.916)&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
Both of which lie on the circle.