Finding Residue of Complex Function at Infinity

MartinKitty
Messages
2
Reaction score
0
Hello everyone,
I have a problem with finding a residue of a function:
f(z)={\frac{z^3*exp(1/z)}{(1+z)}} in infinity.
I tried to present it in Laurent series:
\frac{z^3}{1+z} sum_{n=0}^\infty\frac{1}{n!z^n}

I know that residue will be equal to coefficient a_{-1}, but i don't know how to find it.
 
Mathematics news on Phys.org
Expand \frac{z^3}{1+z}=z^3-z^4+z^5-z^6.... The multiply the two series together to find the coefficient you want (as an infinite series).
 
mathman said:
Expand \frac{z^3}{1+z}=z^3-z^4+z^5-z^6.... The multiply the two series together to find the coefficient you want (as an infinite series).
Then i get:
\frac{z^3}{1+z}=(-1)^n*z^{n+3}

and when i multiply I always get {z^3} with some fraction
 
## \left(z^{3}-z^{4}+z^{5}-\cdots \right)\left(1+\frac{1}{z}+\frac{1}{2z^{2}}+\frac{1}{6z^{3}}+\frac{1}{24z^{4}}+\cdots \right)##, the only interested terms are of the forms ##\frac{a_{-1}}{z}##, that are ##\frac{1}{4!}-\frac{1}{5!}+\frac{1}{6!}-\cdots ## so it is ## e^{-1}-\frac{1}{2}+\frac{1}{3!} ## (if I did not make mistakes ...)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
2
Views
1K
Replies
5
Views
3K
Replies
4
Views
1K
Replies
4
Views
2K
Replies
7
Views
2K
Back
Top