The fact of the differential equation be vectorial and not scalar changes everything!
The solution for ##y'(x)=ky(x)## is ##y=C \exp(kx)## and graphically is an exponential curve, but the solution for ##\vec{r}'(t) = K \vec{r}(t)## is ##\vec{r} = C_1 \exp(\lambda_1 t) \hat{v}_1 + C_2 \exp(\lambda_2 t) \hat{v}_2## and graphically is or a saddle, or a node, or a proper node, etc...
Realize that my doubt, in matrix terms, will be so:
\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{bmatrix} \begin{bmatrix} x''\\ y''\\ \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix} \begin{bmatrix} x'\\ y'\\ \end{bmatrix} + \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ \end{bmatrix} \begin{bmatrix} x\\ y\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}