Finding the Cardinality of Set C: A Problem in Subsequence Coverage

  • Thread starter Thread starter grigor
  • Start date Start date
  • Tags Tags
    Cardinality Set
grigor
Messages
4
Reaction score
0
I have faced the following problem recently:

We have a sequence A of M consecutive integers, beginning at A[1] = 1: 1,2,...M (example: M = 8 , A = 1,2,3,4,5,6,7,8 )

We have the set T consisting of all possible subsequences made from L_T consecutive terms of A, which do not overlap. (example L_T = 3 , subsequences are {1,2,3},{4,5,6},{7,8,9},...). Let's call the elements of T "tiles".

We have the set S consisting of all possible subsequences of A that have length L_S. ( example L_S = 4, subsequences like {1,2,3,4} , {1,3,7,8} ,...{4,5,7,8} ).

We say that an element s of S can be "covered" by K "tiles" of T if there exist K tiles in T such that the union of their sets of terms contains the terms of s as a subset. For example, subsequence {1,2,3} is possible to cover with 2 tiles of length 2 ({1,2} and {3,4}), while subsequnce {1,3,5} is not possible to "cover" with 2 "tiles" of length 2, but is possible to cover with 2 "tiles" of length 3 ({1,2,3} and {4,5,6}).

Let C be the subset of elements of S that can be covered by K tiles of T.

Find the cardinality of C given M, L_T, L_S, K.

Any ideas would be appreciated how to tackle this problem.
 
Physics news on Phys.org
It may make sense to look at the union of each subset of K tiles, and then take power sets of their union.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top