This reply doesn't really stand alone, I was trying to build on what others had previously said.
If f is a nice function (for instance, a polynomial in x and y, or some other equation not doing anything crazy. Look up space filling curve.), the solution set is one-dimensional. So it is a curve in the plane.
In other words, the equation f(x,y)=0 has a set of solution points (x,y) that is a curve. Along some sections of that curve, we might be able to write the curve explicitly, as y=y(x), or g(x), whatever. Notice that along the curve, f=0.
We can use f to look at other parts of the ambient plane. f may take many values; in fact, for each value of c, we expect the equation f(x,y)=c to give various curves in the plane, a solution set for each value c. Notice that once we pick a curve as specified, f is constant, along that curve. In other words, df=0. (We could say something like, "because d(c)=0"; i.e., the differential of a constant is zero.)
The idea of an equation, or relation, determining a 1-d subset of the plane, ie curve, generalizes and is a very useful and frequently used concept in math and science, and you should totally try to absorb the idea into your brain, and keep an eye out for when it comes up.