MHB Finding the equation of the parabola

  • Thread starter Thread starter Chipset3600
  • Start date Start date
  • Tags Tags
    Parabola
AI Thread Summary
To find the equation of the parabola passing through points A(0,1), B(-1,-2), and C(-2,7), two types of parabolas can be derived: a vertical parabola and a horizontal parabola. The vertical parabola is given by the equation y = 6x^2 + 9x + 1, while the horizontal parabola is represented by x = -2/27y^2 + 7/27y - 5/27. A system of equations is created by substituting the points into the general forms of the parabolas, leading to the solutions for coefficients a, b, and c. The discussion also notes that rotating the axes can yield an infinite number of parabolas. The solutions provided clarify the equations for both orientations of the parabola.
Chipset3600
Messages
79
Reaction score
0
Hello guys, please help me, knowing that the parabola passes through the points A(0,1), B(-1,-2) e C(-2,7). How can i find the equation?
 
Mathematics news on Phys.org
This question has also been posted on MHF for which responses have been given.

I don't want to see the folks here take the time to post help when it has already been given elsewhere. ;)
 
Hello, Chipset3600!

Find the equation of the parabola passing through: A(0,1), B(-1,-2), C(-2,7).
There are two such parabolas: one "vertical" \cup, the other "horizontal" \supset.Vertical: .y \:=\:ax^2 + bx + c

Substitute the points and create a system of three equations.
The system has the solution: .a = 6,\:b = 9,\:c = 1

The equation is: .y \;=\;6x^2 + 9x + 1Horizontal: .x \;=\;ay^2 + by + c

Substitute the points and create a system of three equations.
The system has the solution: .a = \text{-}\tfrac{2}{27},\:b = \tfrac{7}{27},\:c = \text{-}\tfrac{5}{27}

The equation is: .x \;=\;\text{-}\tfrac{2}{27}y^2 + \tfrac{7}{27}y - \tfrac{5}{27}
 
I didn't consider anything but the parabola with vertical axis of symmetry...I suppose we could find an infinite number of parabolas by rotating the axes by any angle we choose. (Cool)
 
Thanks guys :)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top