MHB Finding the explicit solution and the Interval of Validity

  • Thread starter Thread starter shamieh
  • Start date Start date
  • Tags Tags
    Explicit Interval
shamieh
Messages
538
Reaction score
0
Find the explicit solution to $tyy' − 1 = 0$, $y(1) = 4$ and give the interval
of validity.

$ty \frac{dy}{dt} - 1 = 0$

$y \frac{dy}{dt} - 1 = 0$ ==> $ydy - {1/t} dt = 0$

$ydy = 1/t dt$

$\frac{y^2}{2} = ln(t) + c$$y = \sqrt{2ln(t) + c}$

applying $y(1) = 4$

so the explicit solution is:
$C = 4$
But I'm not sure how to get the interval of validity?
 
Physics news on Phys.org
so for the interval of validity I got

$2ln(t) + 4 >0$

$1/e^2 < t < \infty$

so $\sqrt{C} <=> C$ right? since $C$ is just some arbitrary constant??
 
Hi Shamieh,

Let's pick $c=16$, otherwise it won't fit.
That makes the explicit solution $y=\sqrt{2\ln t + 16}$.
And let's pick $2\ln t + 16 \ge 0$ (including equality).

Btw, any $y=\pm\sqrt{2\ln(-t)+C_2}$ is also valid in combination with the solution you've found.
 
Thanks Serena,

That being the case...would that imply that my Interval of Validity is: $\frac{1}{e^8} \le t < \infty$ ?
 
shamieh said:
...That being the case...would that imply that my Interval of Validity is: $\frac{1}{e^8} \le t < \infty$ ?

Yes...we require:

$$\ln|t|+8\ge0$$

And so we see that $t\ne0$ and:

$$e^{-8}\le|t|$$

And so we must pick from:

$$\left(-\infty,-e^{-8}\right]\,\cup\,\left[e^{-8},\infty\right)$$

the sub-interval containing $t=1$ which is $\left[e^{-8},\infty\right)$.
 
MarkFL said:
$$\ln|t|+8\ge0$$

For negative t we can have a (any) different constant of integration...
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top