Let H=\hbar\omega \[ \left( \begin{array}{ccc}<br />
1 & i & 0 \\<br />
-i & 1 & 0 \\<br />
0 & 0 & 1 \end{array} \right) \]
and let A =\hbar \left[ \begin{array}{ccc}<br />
1 & 0 & i \\<br />
0 & 1 & 0 \\<br />
-i & 0 & 1 \end{array} \right].
Calculate the uncertainty relation \sigma_E \sigma_a for a system in the energy ground state.
My problem is calculating \langle [H,A]\rangle.
The commutator [H,A]=\hbar^2\omega \left[ \begin{array}{ccc}<br />
0 & 0 & 0 \\<br />
0 & 0 & 1 \\<br />
0 & -1 & 0 \end{array} \right]
And if relevant the eigenvalues of H are \hbar\omega \{0,1,2\}.
It says to calculate in the ground state, but I don't know the ground state, so how do I gather it from this data?