Finding the ith Item in a Continued Fraction Expansion

  • Thread starter Thread starter Charles49
  • Start date Start date
  • Tags Tags
    Fractions
Charles49
Messages
87
Reaction score
0
Suppose we can write a real number x as a continued fraction like this

x=a0+1/(a1+1/(a2+1/(a2+...=[a0; a1, a2, a3, a4, ... an...].

Is there a binary operation f(i,x) so that f(i,x)=ai? I was wondering if there was a formula which gives the ith item in the sequence of integers which is connected to every x in the context of this expansion.

Every rational number has a unique continued fraction expansion so I think this is a valid question. Moreover, every irrational number has a unique, infinite continued fraction expansion.

My first guess was to combine the inputs a, b in the Euclidean algorithm from which the continued fraction expansion arises but I don't know how to extract the ith item in the sequence of quotients. Any thoughts?
 
Mathematics news on Phys.org
Thanks a lot for answering my question. It's a big step in the right direction.

My question was how to compute the continued fraction expansion of a fraction. For example, using the Euclidean algorithm, we have
<br /> \frac{7}{10}=0+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{3}}} <br />
Therefore, $$a_0=0, a_1=1, a_2=3, a_3=3, a_4=0, a_5=0, a_6=0,\dots$$

Is there a way to compute $$a_n$$ without using the euclidean algorithm?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top