- #1

- 27

- 0

## Homework Statement

Find the mass of the solid bounded by the cylinder [itex]x^2+y^2=2x[/itex] and the cone [itex]z^2=x^2+y^2[/itex] if the density is [itex]\delta = \sqrt{x^2+y^2}[/itex]

[b2. The attempt at a solution[/b]

I had some trouble looking at how to set up the limits on this integral. What I came up with was:

[itex]2 \int_0^2 \int_0^{\sqrt{2x^2+2x}} \int_0^{\sqrt{x^2+y^2}} \sqrt{x^2+y^2} dzdydx [/itex]

[itex]= 2 \int_0^2 x^2\sqrt{x^2+y^2} + ((\sqrt{x^2+y^2})^3)/3 dx[/itex]

And this is just an ugly integral. I tried doing it in cylindrical coordinates but it wasn't working out terribly well that way either. Any hints? Thanks!