- 42,778
- 10,484
Well, it wasn't quite that simple. Treating them as though they don't overlap means taking them to be point masses. The trouble with a portion within the lens is not only that there is no net force between the +ve and -ve elements of the lens, but that there is a reduced force between those elements and the portions outside the lens. Pranav-arora quite correctly ran separate integrals for d-R to R and R to d+R. In the first, only the portion of the other sphere at radius < r contributes to the attraction, so it gets a factor (r/R)2.rcgldr said:I only meant the forces related to the volume within the lens is zero, not that it has to be solved that way. To solve the problem, you can calculate the force as if the spheres didn't overlap, then subtract a force to compensate for the volume within the lens, which is what the OP ended up doing,
Yes, the integrals could have dealt with forces instead of potentials. Not sure which is simpler algebraically.
