Finding the Quadratic of a Graph using Tangents

  • Thread starter Thread starter healey.cj
  • Start date Start date
  • Tags Tags
    Graph Quadratic
healey.cj
Messages
11
Reaction score
0
Hey everyone,

We've been covering tangents and derivatives etc in class recently but there is a question on the assignment that we've been given that i don't know how to do.

The question is:
"A quadratic equation can be fitted to any three points on a cartesian plane. The model for such an equation in y=ax + bx+ c. By substitution three separate points (The first, middle and last data points) derive the equation of the Quadratic function that models the data."

The situation is a cup of hot coffee is left to cool over a 50 minute period and we have been given this table of values:

mins : Degrees Celcius
0 :83
5 :76.5
8 :70.5
11:65
15:61
18:57.5
24:52.5
35: 51
30:47.5
34:45
38:43
42:41
45:39.5
50:38

From there i have plotted the time vs. temp graph and attached 3 tangents to points time (t) = 0, t = 25 & t = 50.

at t=0 the Rate of Change or gradient was -1.85Degrees/min
at t=25, the ROC or Gradient was -0.92degrees/min
at t=50, the ROC or Gradient was -0.13degrees/min

I'm not asking for you to do this for me, I am just asking for the path i need to take or an idea of what i need to do...

Thanks everyone,
Chris :smile:
 
Physics news on Phys.org
Come on guys, just steer me in the right direction...Please
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top