MHB Finding the Value of $f(84)$ in an Integer Function

Click For Summary
To find the value of f(84) in the given integer function, the function is defined piecewise, with f(x) equaling x-3 for x greater than or equal to 1000, and f(f(x+5)) for x less than 1000. Since 84 is less than 1000, the recursive nature of the function means that f(84) requires evaluating f(f(89)), and this process continues with increasing values until reaching a point where x is greater than or equal to 1000. The function's recursive structure suggests that it will eventually lead to a base case that can be calculated directly. The final value of f(84) is determined through this iterative process, ultimately yielding a specific integer result.
Albert1
Messages
1,221
Reaction score
0
$\text{given } :x \in\mathbb{Z}$

$f(x)= \begin{cases}x-3 & x \geq 1000 \\f\big [f(x+5)\big ]& x<1000 \end{cases} $

$\text{find } :\,\, f(84)$
 
Mathematics news on Phys.org
Albert said:
$\text{given } :x \in\mathbb{Z}$

$f(x)= \begin{cases}x-3 & x \geq 1000 \\f\big [f(x+5)\big ]& x<1000 \end{cases} $

$\text{find } :\,\, f(84)$

Lemma
$f(x)= \begin{cases}
x-3 & x \geq 1000 \\
997 & x<1000 \text{ and $x$ even} \\
998 & x<1000 \text{ and $x$ odd} \\
\end{cases} $

Proof
Use full induction going down.
Initial condition: we can verify that it is true for any $x \ge 997$.
Induction step: suppose it is true for any $x$ and some $y$ with $y < x$ and $y< 997$.
Then we need to distinguish the cases that $y$ is even or $y$ is odd.
When we fill in what we already have for $f(y)$ it follows that the given formula is also true for $f(y)$, which completes the proof.

Using the lemma we find that $f(84) = 997$.
 
I like Serena said:
Lemma
$f(x)= \begin{cases}
x-3 & x \geq 1000 \\
997 & x<1000 \text{ and $x$ even} \\
998 & x<1000 \text{ and $x$ odd} \\
\end{cases} $

Proof
Use full induction going down.
Initial condition: we can verify that it is true for any $x \ge 997$.
Induction step: suppose it is true for any $x$ and some $y$ with $y < x$ and $y< 997$.
Then we need to distinguish the cases that $y$ is even or $y$ is odd.
When we fill in what we already have for $f(y)$ it follows that the given formula is also true for $f(y)$, which completes the proof.

Using the lemma we find that $f(84) = 997$.
I like Serena :very smart induction (Clapping)
 
My approach is different from I like serena

we evaluate f(999) through f(995)

f(999) = 998
f(998) = 997
f(997) = 998
f(996) = 997
f(995) = 998

now f(85)= f^183 (998) notation for f is applied 183

applying f twice gives 998 and so on applying 182 time gives 998 and then once more gives 997 which is the ans
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K