Finding the Value of $f(84)$ in an Integer Function

Click For Summary

Discussion Overview

The discussion revolves around finding the value of the function \( f(84) \) defined by a piecewise function for integer inputs. The function has different behaviors based on whether the input is greater than or equal to 1000 or less than 1000, leading to a recursive definition for values below 1000.

Discussion Character

  • Homework-related, Mathematical reasoning

Main Points Raised

  • Post 1 and Post 2 present the same piecewise definition of the function \( f(x) \) and the task of finding \( f(84) \).
  • Post 3 introduces a comment about using induction, although it does not specify how this relates to finding \( f(84) \).
  • Post 4 indicates a differing approach from the previous comment but does not elaborate on the specifics of that approach.

Areas of Agreement / Disagreement

There is no consensus on the method to solve for \( f(84) \), as different approaches are being proposed without resolution.

Contextual Notes

The recursive nature of the function for \( x < 1000 \) introduces complexity that may depend on further exploration of the function's behavior as \( x \) approaches 1000.

Albert1
Messages
1,221
Reaction score
0
$\text{given } :x \in\mathbb{Z}$

$f(x)= \begin{cases}x-3 & x \geq 1000 \\f\big [f(x+5)\big ]& x<1000 \end{cases} $

$\text{find } :\,\, f(84)$
 
Mathematics news on Phys.org
Albert said:
$\text{given } :x \in\mathbb{Z}$

$f(x)= \begin{cases}x-3 & x \geq 1000 \\f\big [f(x+5)\big ]& x<1000 \end{cases} $

$\text{find } :\,\, f(84)$

Lemma
$f(x)= \begin{cases}
x-3 & x \geq 1000 \\
997 & x<1000 \text{ and $x$ even} \\
998 & x<1000 \text{ and $x$ odd} \\
\end{cases} $

Proof
Use full induction going down.
Initial condition: we can verify that it is true for any $x \ge 997$.
Induction step: suppose it is true for any $x$ and some $y$ with $y < x$ and $y< 997$.
Then we need to distinguish the cases that $y$ is even or $y$ is odd.
When we fill in what we already have for $f(y)$ it follows that the given formula is also true for $f(y)$, which completes the proof.

Using the lemma we find that $f(84) = 997$.
 
I like Serena said:
Lemma
$f(x)= \begin{cases}
x-3 & x \geq 1000 \\
997 & x<1000 \text{ and $x$ even} \\
998 & x<1000 \text{ and $x$ odd} \\
\end{cases} $

Proof
Use full induction going down.
Initial condition: we can verify that it is true for any $x \ge 997$.
Induction step: suppose it is true for any $x$ and some $y$ with $y < x$ and $y< 997$.
Then we need to distinguish the cases that $y$ is even or $y$ is odd.
When we fill in what we already have for $f(y)$ it follows that the given formula is also true for $f(y)$, which completes the proof.

Using the lemma we find that $f(84) = 997$.
I like Serena :very smart induction (Clapping)
 
My approach is different from I like serena

we evaluate f(999) through f(995)

f(999) = 998
f(998) = 997
f(997) = 998
f(996) = 997
f(995) = 998

now f(85)= f^183 (998) notation for f is applied 183

applying f twice gives 998 and so on applying 182 time gives 998 and then once more gives 997 which is the ans
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
3
Views
2K
  • · Replies 28 ·
Replies
28
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
1K