Finding work when displacement is a function of force

AI Thread Summary
The discussion centers on the relationship between calculus and physics, specifically in calculating work when displacement is a function of force. The original equation for work, W=∫F(d)Δd, raises questions about whether W=∫d(F)ΔF would yield correct results. Participants clarify that to calculate work, the total force must be multiplied by the distance moved, emphasizing that force and displacement can be functions of time without altering the fundamental definition of work. The integration of force and displacement remains valid regardless of their dependence on time, as they can be expressed in terms of time as a parameter. Overall, understanding these relationships is crucial for accurately applying calculus in physics contexts.
smengler
Messages
3
Reaction score
0
Hi, I've taken introductory calculus and am doing algebra based physics, but I'm trying to understand how to relate calculus to physics. This is more of a theoretical question than a practical one, so I might be rambling on about something that doesn't even work.

I know that W=∫F(d)Δd, but what would you do if you have displacement as a function of force instead? Could you say that W=∫d(F)ΔF ? Would this give you a correct answer?

Another question, back to the original equation W=∫F(d)Δd, if displacement is a function on time, will this make any difference when determining work? I think that it does not, but I am not sure. My reasoning is that if you had d(t) = 5t^2, force is still a function of displacement, so when integrating, the displacement should still increase at a constant rate regardless of time. Therefore it would not matter if displacement changes with respect to time since force is independent of time. Is this correct (if you can even understand what I'm asking :smile: )? I'm looking for a mathematical reasoning more than a "physics" reasoning. Anyways, thanks for your help!
 
Physics news on Phys.org
Your second paragraph suggests that you may have a misconception. To calculate work you need to multiply the whole of the force (I'm uneasy about ΔF) by the distance it moves through. This assumes these are in the same direction; in general you take the dot product of the force and the displacement (though I know this is not the issue which worries you).

It's commonly the case that force and/or displacement is/are functions(s) of time. This doesn't affect the basic definition of work as dW = F.dr. Regard time, if you like, as a parameter in terms of which the force, F, on the body and/or, r, the body's displacement, can be expressed.

Simple example: suppose a body has velocity v, and is acted upon by a constant force F. In time dt the work done on it will be dtF.v.
 
Last edited:
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top