I Finite difference Hamiltonian

aaaa202
Messages
1,144
Reaction score
2
Suppose I am given some 1D Hamiltonian:

H = ħ2/2m d2/dx2 + V(x) (1)

Which I want to solve on the interval [0,L]. I think most of you are familiar with the standard approach of discretizing the interval [0,L] in N pieces and using the finite difference formulas for V and the second derivative in (1), which can then be formulated as a matrix equation, which may be diagonalized for the eigenvector and eigenvalues.
Now for all this to work one has to assume that the wave-function goes to zero outside the interval [0,L], which follows if one makes the effort of writing up the finite difference expressions. My question is: Is there a way to enforce another boundary condition with this method? I am solving a problem, where it would be beneficial to enforce the wave function to take a non-zero value on the boundaries of the interval [0,L]. Is this possible with the standard finite difference method or should I look at more advanced methods?
 
Physics news on Phys.org
you just have to include the areas outside of the [0,L] in the discretization, the wave function will fall off to 0 depending on the structure of the potential.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...

Similar threads

Replies
12
Views
3K
Replies
21
Views
3K
Replies
1
Views
1K
Replies
10
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
6
Views
2K
Replies
2
Views
2K
Back
Top